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ABSTRACT

Engineers are constantly working with systems coupled through components that require their distributed
dynamic effects are taken into consideration. This paper represents a method to correctly represent the com-
pliance of a lumped-parameter finite-mode representation of a continuous system. To accurately represent
the deflections in the system, a residual compliance is required beyond the first n-modal compliances. The
equations for the C-field entries of a generic m-force continuous system are derived including the residual
compliance. Once the C-field equations are derived, the causality considerations for integrating residual
compliances are discussed. Using these results, an example of a simply-supported Bernoulli-Euler beam
with two force inputs is developed for the reader and results are shown with and without the correct residual
compliance. Additionally, an example of a cart with a mass attached to a flexible beam is presented show-
ing that residual modes will occur when the residual compliance is integrated into larger systems models.
This gives the user a powerful tool to integrate modal information into their models that has been shown to
increase fidelity in other applications like finite element analysis.

Keywords: Continuous Systems, Modal Analysis, Residual Compliance.

1 INTRODUCTION including modal information for a structure.
As most engineers should know, there are an
infinite number of modes in any system but retain-
ing a large number of modes is not practical or
required for the types of models and analysis that
bond graphs are generally employed for. While
this pruning of modes makes sense from a com-
putational point of view, it can have unintended
consequence of altering the dynamic response of
the analysis to the point that it is no longer appro-
priate. In order to handle this situation, the user
can calculate a residual compliance that represents
ICBGM*2021 Nov 8-10, 2021- San Diego, that f:ompl%an.ce associated with the pruned modes.
California USA - ©2021 Society for Adding this into the model corrects steady-state
Modeling & Simulation International (SCS) deflections and makes residual modes appear in

the system due to interaction between structural

Controlled systems, especially position control
systems, are always mounted on some sort of
structure. In many cases modal information is
not required to accurately control the system and
meet the design objectives. However, there are
situations, such as vehicle and aerospace structures
(Margolis 1985, Mukherjee, Siegler, and Thronson
2019) , where the modal information can become
critical to meeting objectives and verifying stabil-
ity. Bond Graphs provide a simple way of
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Figure 1: SYSTEM BOND GRAPH

and system components. The reduction in error
at higher frequencies by including these residual
modes is well known in the structural dynamics
community (Blelloch, Dickens, Majed, and Sills
2019) but generally done in Hurty/Craig-Bampton
models of large Finite Element Model (FEM)
systems. For systems of interest to a bond graph
modeler, the residual compliance is a field of size
m X m where m indicates the number of points
of interaction between the structural element and
other system components. In this paper a general
method for calculating the residual compliance
field is presented. While it would be great if
there were always a closed form solution for
steady-state deflections fo a structural element,
the required information will most likely come
from a FEM simulation. Luckily the analysis
lends itself to the information coming from either
source. The paper is organized as follows: First,
the residual compliance calculations are developed
and resented for the general m-input case. Second,
causal considerations are analyzed and a closed
form solution is presented for a residual com-
pliance field with a mixed-causality assignment.
Next, two simple examples are presented for a
fixed-fixed Bernoulli-Euler beam and a cart with a
flexible mass attached to a vertical beam. Finally,
conclusions and future work are discussed.

2 DEVELOPMENT

The bond graph in Fig. 1 represents a fixed
continuous system represented by infinite modes
with interfaces at m-locations. =~ The modulus
of each transformer (Y;;) is the mode shape i
at location j or the connection between the i
0O-junction interface and the j I-junction that
represents mode-j. It should be obvious that
as n — oo, the system will represent the partial
differential solution of the continuum center line
with infinite modes. The transformer moduli have
been omitted from the bond graph for cleanliness.
If there system were not fixed, the user would
simply include any rigid body modes in the model.

For a veteran bond graph user, it should be
obvious that the velocities at each interface will be
calculated with the following equation

N Y .
vi=Y, —p; (1

j=1mMj

From this bond graph and Eq (1) it should be easy
to see that the displacement at each node (;) can
be found by integrating Eq.(1).

6= [ vidt = Z Yiid; @)

Now consider a system where n-modes have been
retained. A residual compliance-field must be
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Figure 2: AUGMENTED MODAL SYSTEM BOND GRAPH

calculated and attached to each O-junction that
represents the effort inputs into the system. This
will result in an added multi-port as shown in
Fig. 3. Adding the residual compliance field
results in the augmented bond graph shown in
Fig. 2.

The find the constitutive law for the required
C-field, start with Eq. (2) at each node.

or=Yngi+Yog+...+ Y 3)
0 =Yuq1+Yoq+...+Yougn “4)

Om =Ymq1 +YmGo + ...+ Yongn &)

Now inserting the constitutive law
qi=CiV1jF+Y2jFo+...+YiFy]  (6)
where C; = 1/kj, into Egs. (3-5) results in the fol-

lowing equation

8 =CF (7)
Where .
6= [51 & am} ®)

F= [Fl o Fmr ©)

YiYiCe  TaYiuYaCr ... Ta YieYuCr
YiYiuYuCr  LiY5Ce ... TiYarYouCr

(10)

Y YiYukCo i YouYouCr .. La¥2Cr

It should be noted to the reader that C is a symmet-
ric matrix where the each coefficient can be found
with the equation

n
cij= Y YaYiCr (11)
k=1
and
C,'j = le' (12)

This is as expected due to Maxwell reciprocity in
fields (Karnopp, Margolis, and Rosenberg 2012).
For some systems, such as a fixed-fixed beam, one
can find the steady state displacements as a func-
tion of the applied forces that can be equated to the
modal displacements that takes the form

01 Cih Cn ... Cm| |

o) Gy Cn ... Cu| | B

=1 . . } ) (13)
6m le Cm2 cee Cmm F m

CSS
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Subtracting Eq. (7) from Eq. (13) results in a resid-
ual of the form
0=CF (14)

Where

Ci1 — Lk YECe Cio— X YiYaCy ...
Co1 — LiYiYuCr Coo — i Y3Ch ...

S0
L -

r=

(15)
Crm Crun < Cr

and
n

¢, =Cij— Y YaYiuCy (16)
k=1

In all reality, an analytical result for ¢;,; is not re-
alistic and the summation should be found by it-
erating numerically until the value converges to an
acceptable level. This should happen quite quickly.
In more complex systems, an analytical solution is
not guaranteed and should not be expected. In this
case, the modal information will either be found
by using an FEA solver or testing and extracting
the relevant modal information. If enough modal
information is available, the residual compliances
must be calculated from the following equation

ey =Y, YaYiCr (17)
k=n+1

In the case of a system that can move freely, i.e. a
free-free beam this will also apply. When higher
mode information is not available, one could find
the steady-state deflections due to a known force
input. In this case the total deflection (8) will fol-
low Eq. (13). Now the deflection due to the in-
cluded modes can be found using Eq. (7) and the
known force. It is straight forward that the dis-
placement due to the residual compliance is

6,=0—-CF=C,F (18)

Unfortunately, one needs to simulate the system
with m-linearly independent force input vectors.
In this case, it is easiest to use a unit input at
each point. This results in m-displacement vec-
tors. In the case of unit force inputs the matrix
[Fi,Fa,...,Fy] = Lk, which results in a matrix
of displacements A = [0}, &, ..., 8,,] and C, can be
calculated by

C,=A-C (19)

In general, the modal information should be avail-
able so this approach will not be needed.

2.1 CAUSALITY CONSIDERATIONS

As with all bond graphs, integral causality is not
guaranteed in the final form. The C-field represent-
ing the residual compliance can easily find itself in
derivative or mixed causality leading to additional
equation formulation requirements. To that end,
the general derivative causality solution method
can be applied to the field. First look at a mixed
causality C-field.

. F3 qr}
F2 qr, .
l Fl C En ‘
qry r.,

Figure 3: MIXED CAUSALITY C-FIELD

Putting the field into the generic displacement-
effort relationship of Eq (14) and rearranging the
displacement and forces vectors into input forces
(F;), output forces (F,), input displacements (&),
and output displacements (J,) results in the follow-
ing matrix equation.

a-lee @] e

In this case, the output forces (F,) are on the causal
bonds and output displacements (q,) are on the
acausal bonds. The inputs, q; and F;, are coupled
with their corresponding causal assignment. Rear-
ranging Eq. (20) into I/O form results in the fol-
lowing matrix equation

—Cio 00| |[Fo| |GCi —Li| |F;
I:_Coo IJ [qo] B [Coi Oi] [qi] @y
M

Using the Schur complement (Petersen, Pedersen,
et al. 2008), one can solve for the inverse of M
and find the required I/O relationship to solve the
derivative causality loop.

Fo —Cio 'Cyi Cio ! F;
= ! _ 22
M [Coi ~CooCio 'Cit CouCio!| || ¥
Note: It should be obvious that when the C-field is
in complete derivative causality, one simply needs
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Figure 4: EXAMPLE 1 - FIXED-FIXED
BERNOULLI EULER BEAM

to differentiate both sides to find the relationship
q=C/F (23)
where F is found from the attached subsystems.

As can be seen, without the residual compli-
ance, any attached subsystem setting the velocity
on one of the nodes would result in derivative
causality on one of the modes. The residual com-
pliance acts as a buffer to acausal modal states.
However this is not for free. When the effort on
an input bond is set by an external subsystem,
derivative causality results, begging the question
of adding a small mass between the attached
subsystem and node of interest to alleviate the
derivative causality issue.

3 EXAMPLES

Both of these examples are simple but illustrate the
importance of including the residual compliance in
dynamic models of continuous systems. In both
examples the residual compliance is taken as

Cr — |:C’”|1 CV12:| (24)

Cryi Cry

3.1 FIXED-FIXED
BEAM

BERNOULLI-EULER

The first example is a simple fixed-fixed Bernoulli-
Euler beam shown in Fig. 4. The beam has elastic
modulus E, second moment of inertia /, density p,
and cross-sectional area A. Two forces act on the
beam at points /; and [,. For this example only two
modes are retained resulting in the bond graph of
Fig. 5.

0 : 1 C— 0
qr, qr,
7{va] 7(voz
F](l)iSe Fz(t):Se
Figure 5: EXAMPLE 1 - FIXED-FIXED

BERNOULLI EULER BEAM BOND GRAPH
WITH 2 RETAINED MODES

The equations of motion for this system are

p1=—-kigi +Y1Fi+Ya (25)
1

g1 =—p1 (26)
mj

D2 = —kogo + Y12 F1 + Yoo P> (27)
1

9@ =—p2 (28)
my

and the outputs of interest are

Yll Y12 . .

v()] :7p1+7p2+C}’11F1+C}’12F2 (29)
nmy np
Y2 Y . .

v()z = —PD1 + — P2 +C7'2] Fl +Cr22F2 (30)
mi my

The fixed-fixed beam has the same frequency equa-
tion as the free-free solution or

coshk,Lcosk,L =1 a3

In order to calculate the residual compliances for
the fixed-fixed beam shown above, the equation is
needed for the deflection of a beam under a point
load. For beam with a single point load applied
at x = a, as shown in Fig. 6, the deflection at any
point on the beam can be found with the Eq. (32)
and (33) (Box 2004).

x*(L—a)?(3al — xL — 2xa)

o(x<a)=F CEIL (32)
201 _ 2 T
S(x>a) = s (L—a)*(3aL — xL — 2xa)
6EIL? 33
(x—a)’l? 59
ypE

6EIL3
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6

Figure 6: EXAMPLE 1 - FIXED-FIXED
BERNOULLI EULER BEAM

Now for a fixed-fixed beam with multiple forces,
the deflection at each point can be found by the
principle of superposition (Bedford, Fowler, and
Liechti 2003). The total deflections at /; and [/, for
the system of Fig. 4 are found to be

3 L— 3
sy = A=l
N B(L—15)*(3LL—L— 21112)F
G6EIL? :
2(1 2 _ _
5<lz):11(L 1L)*(3LL—1,L 21112)F1
6EIL? (35)
BIL—b)
3EILY 2

This enables the calculation of the residual compli-
ances and can be found using the following equa-
tions
c :7113@_11)3—321—&22 (36)
" 3EIL3 ki k

_B(L-hL)? Yy Y}

T T e 37
2T BRI Tk ke 37)
. :lf(L712)2(312L7llszzllz)
e 6EIL3 (38)
Y Yi¥p
ki ka

3.1.1 RESULTS

Start with finding the steady-state values finding
steady state results for Eqgs. (25-28). This results

—

Flexible Beam

Figure 7: EXAMPLE 2 - FLEXIBLE BEAM
CART WITH ATTACHED MASS

in the steady-state values

Plss = 0 (39)
Y1 O3
=—nN+—F 40
q1,ss kl 1+ kl 2 ( )
P2ss = 0 (41)
Y; Y,
q2.ss = £F1 + EFZ (42)
ko ko

Now integrating Eqs. (29) and (30) results in the
following displacement equations

ass(ll) = Yllq1,ss +Yl2q2,ss+cr11FI +Cr12F2 (43)
633(12) = Y21q1,ss +Y22q2,ss + Cr21F1 + CrzzFZ (44)

Now substituting g1 s, 2,55 Cry;> Criz» Cryy» and €y,
into the above equations will result in the deflec-
tions of Egs. (34) and (35). Doing the algebra is
left as an exercise for the interested reader.

CART WITH A MASS ATTACHED TO A
FLEXIBLE BEAM

In this simple example, shown in Fig. 7, a with a
mass attached to the tip of a flexible beam is ana-
lyzed. From FEA simulations it is known that only
the first non-rigid mode needs to be retained. Us-
ing this knowledge, the complete bond graph can
be seen in Fig. 8.
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Figure 8: EXAMPLE 2 - BOND GRAPH

3.1.2 SOLVING THE DERIVATIVE
CAUSALITY

To solve with the derivative causality on the
compliance field, insert the following values into
Eq. (22).

Fo=F, (45)
F; = Fi, (46)
9o =4, 47)
qi = qr, (48)
Ci=cn, (49)
Cio = ¢y (50)
Coi =y (51)
Coo =cCrpy (52)

Where g, and g,, are the residual steady-state de-
flections that result from the application of forces
at the base and tip. In our case, F} £ F,, and
F, = F,, is the force resulting from the displace-
ment across the residual compliance. ¢;; are calcu-
lated using Eq. (17). This results in the following
system of equations

£ — —Cryy [Cryy 1/cry, £ (53)
qr. Crip — CrpCy /Crzz Crlz/crn qr:
Using this relationship, the equations of motion
can be generated using standard bond graph equa-

tion formulation techniques. The resulting equa-
tions governing the dynamics of this system are

1 Cr
Po=—4qr+ <1 — = ) F; (54)
2 2
Y; Y| ;c
p1= *qu1 + ﬁqn 4 (Yl,c 1,tCryy > F,
Cry rn
(55)
) 1
g1 = —p1 (56)
mj
1 1 Y
G =—pi——po— —1pi (57)
ny mo mi
1 c
pt =——( + ﬂFin (58)
22 22

The derivative causality on the residual compliance
results in the input force fed through to the tip lo-
cation while the acausal bond on the residual com-
pliance is not utilized during equation formulation.
However, it will be used to derive any of the flow
outputs attached to the left O-junction. For this ex-
ample, a logical output to monitor would be the
differential velocity and position between the cart
base and tip mass, v. — v, and [(v. — v;)dt respec-
tively. These outputs are found with the following
equations

1
Vi =—D: (59
ny
1 c 1
Vc:< —m>P0+<ch
myo C,»22
Cri, Y Cr
12 1,t> L+ » (60)
2 CrypMy
+ <Cr|1 - EraCra ) Fin
Cry
3.1.3 RESULTS

The system was built in Siemens NX Motion
(Seimens 2021) and simulated without the tip
mass. The results were then analyzed using IMAT
(Engineering 2021) to extract the modes, mode
shapes, and modal compliances of a cart with a
mass of 0.104 kg. IMAT outputs mass normalized
values som; =1 kgV j. The values for the simula-
tion and outputs from IMAT are shown in Table 1.
Using these values and Eq. (17), the residual com-
pliances were calculated and are shown in Fig. 9.
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Figure 9: EXAMPLE 2 - RESIDUAL COMPLI-
ANCES VS CONSIDERED MODES

It should be clear that The compliances converge
quickly as additional modes are considered.

Table 1: Modal Parameters

mode | f[Hz] | Y. | Yi; | Cx107° [m/N]
1 94 | 295 | -6.66 0.2858
2 515 | -2.76 | -6.35 0.0095
3 1195 | -2.02 | 5.52 0.0018
4 | 1669 | 0.15 | -2.90 0.0009
5 1669 | -0.11 | 2.13 0.0009
6 | 2482 | 138 | 5.86 0.0004
7 | 3760 | 1.23 | -4.54 0.0002
8 | 4489 | 0.14 | -4.34 0.0001

After convergence, the residual compliances are
found to be

cryy =8.10x 1077 61)
Cryy = Cry = 1.49x 1076 (62)
Cry =4.71x107° (63)

Using the residual compliance values and the in-
formation for the first mode in Table 1, the state

space system is

po = 212240g,, +0.6832F, (64)
p1 = —349860q, — 1143800q,, + 5.0552F,, (65)

q1=p1 (66)
1

qr, = —9.6167py+6.6611p; + ;Pt (67)
t

pr = —212240q,, + 0.3168F;, (68)

Using these equations, the determinate of the sys-
tem can be parameterized by m;

2.1
detA = s* 4 (100.1 + ==) x 10°s?
" (69)

7.42
+(71.41 4+ =) x 10"

ny

This shows that including the residual compliance
adds an additional mode that estimates the effects
of residual compliance in the system due to pruned
modes. Using this equation, one can easily ana-
lyze the effects that the tip mass has on this system.
This shows how the resonance frequencies change
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Figure 10: EXAMPLE 2 - NATURAL FRE-
QUENCIES AS TIP MASS CHANGES

as the tip mass increases. The higher (residual)
mode converges much faster while the lower (in-
cluded) mode does not converge as quickly. The
two modes converge to 40.75 and 550 Hz respec-
tively. For many analyses and control designs,
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these frequencies may be much faster than are re-
quired but may affect the performance depending
on what the requirements are. Further, without the
residual compliance, the residual mode would not
be apparent in this system. This is an additional
advantage when including residual compliances in
the system. It will allow for higher order dynamics
due to system level interactions to be analyzed.

CONCLUSIONS

In this paper a method of including residual com-
pliances in finite mode representations of contin-
uous structural elements was developed. Includ-
ing this residual compliances allows, not just cor-
rect steady-state deflections, but inclusion of rele-
vant residual system level modes that occur when
modal models are interconnected. Further, resid-
ual compliances can assist in correcting acausal
bond graphs. Two examples were shown for a ba-
sic fixed-fixed Bernoulli-Euler beam as well as the
effects on a cart with a mass attached to a flexi-
ble beam. These examples showed the validity of
the method as well as its usefulness in integrating
finite mode models into more complex systems.
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