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ABSTRACT

Bond Graphs provide a systematic approach to modeling physical systems of varying complexity and ener-
getic systems/subsystems. In automotive engineering research, this modeling method is suitable such that
it becomes possible to coincide the conceptual design stage with a vehicle analysis model of appropriate
detail. The resulting high fidelity models can reasonably predict performance of the proposed control or
design for a vehicle subsystem, while continuing to provide analytical findings and physical insight. This
paper demonstrates the incremental formulation of such vehicle models for use along any stage of the auto-
motive research process relating to ride and handling enhancements. The models presented will begin with a
commonly referenced bicycle model and progress to an extensive model that captures multiple vehicle body
degrees-of-freedom along with increasing details for subsystems such as steering, braking, drivetrain, and
more.
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1 INTRODUCTION

One key item is required for both concept
generation and development of integrated control
frameworks: a suitable model. Such a model
provides the necessary insight of the physical
nature of the system analytically while generating
predictive results through simulation testing. It
should be understood that the modeler decides
which dynamic behavior is of interest and includes
them accordingly. A well informed control system
is then able to provide an appropriate control

Automatic control is prevalent in numerous
automotive engineering systems. All segments
of vehicles are continuously evolving to suit the
growing need of consumers while placing consid-
eration on alternative technologies to reduce power
consumption for the future. The movement toward
electrification and driver automation highlights
the need for large scale reconfiguration of new
vehicle component systems and integration with

the vehicle. Even changes within a single vehicle
component requires thorough analysis and control
considerations to ensure compatibility with the
other vehicle subsystems.
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action that is based on the predictions and intuition
obtained from the model. Additionally, it is
important to note that while the development of a
component evolves, the model must also follow.
The model synthesis proposed here reflects this
incremental progression. A high level conceptual
idea is matched with a simpler model and as the
concept matures so does the complexity of the
model.
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The bond graph modeling method has been em-
ployed for many years in vehicle dynamics re-
search. It is a graphical approach to modeling any
multi-energy physical system (mechanical, electri-
cal, hydraulic, etc.) which streamlines the model-
ing process for various vehicle components. Bond
graphs are also advantageous for modeling subsys-
tems which can be assembled into an integrated
system. This characteristic is possible through the
assignment of causality, or input-output relation-
ship. In vehicle systems the input-output relation-
ship between components remain consistent when
component changes are applied, allowing for the
flexibility of analyzing individual systems of the
vehicle without modifying the remainder of the
model.

In the following sections a general procedure for
modeling the integration of vehicle subsystems is
presented. The focus will mainly be on planar dy-
namics as it relates to the handling qualities of the
vehicle. A fundamental vehicle model is modi-
fied with increasing complexity and with the ad-
dition of subsequent subsystems. First-order equa-
tions of motion result from the bond graph using a
prescribed procedure lending itself useful for sim-
ulation and control development. Documentation
for the bond graph method and procedures can be
referenced in (Karnopp, Margolis, and Rosenberg
2012).

2 SYSTEM MODEL

The vehicle system consists of the following: chas-
sis body, suspension, steering, drivetrain, and pow-
ertrain. All of components interacting with the
chassis body can be modeled as detailed subsys-
tems or simply inputs (effort or flow) depending on
the scope of study. These sections will demonstrate
incremental process of adding complexities to a ve-
hicle model. Utilizing fixed causality relationships
will enable the addition, removal, or modification
of the model without having to change the remain-
der of the system model. To refresh for those fa-
miliar with bond graphs and to inform those who
are not, causality is a notation on a bond graph that
dictates the effort and flow exchange between two
systems. A causal mark on a bond defines the in-
put and output relationships between systems and a
system may only have one configuration: 1) effort

in and flow out or 2) flow in and effort out. This
means the adjacent system has the inverse config-
uration. By maintaining causality, modular anal-
ysis of systems are possible without affecting the
equations of motion of the rest of the system. The
following sections will describe the build up of the
models. See Table 1 for an outline of the models
and their descriptions.

In general, the vehicle is modeled as a 3-D rigid
body with body fixed coordinates centered at the
cg and oriented along principal directions. These
principal velocities are the outputs of the chassis
body while the inputs are the forces and moments
that act on the body. Intermediate velocities at dif-
ferent points along the chassis body can be assem-
bled with the multiport elements: zero junction and
one junction. This input-output relationship will be
held constant for the modeling procedures carried
out. The diagram in Figure 1 describes the interac-
tions between the body and the rest of the vehicle
subsystems.
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Figure 1: Vehicle Chassis Body Input/Output Re-
lationships

2.1 Bicycle Model

The bicycle model is chosen as the fundamental
model as it is widely used for analyzing the pla-
nar vehicle dynamics. This model has front wheel
steering and is assumed to be given a prescribed
forward velocity. Figure 2 shows its defined trans-
lational forward and sideways velocites as u and v
while the angular velocity in the yaw direction is
®. The vehicle has mass m, yaw moment of inertia
J, cg to front axle distance a, and cg to rear axle
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Table 1: Summary of Vehicle Model Build Up

Model Addition Parameters | Inputs
Bicycle Model (FWS) mJabCyC, | &
Bicycle Model (F/RWS) rear wheel steer 0,
caster effects Cas Ca,
bushing effects | m,, k¢ k,
Extended Bicycle Model (4WS) mJabCyC, | O O O Opr
my, Jy Ry, Tif Trf Tr Trr
hg w ke, ke,

drivetrain detail | f,.g»

Te By TB,s By TB,:

Figure 2: Bicycle Model (FWS)

distance b. Inputs to the vehicle are steering angle
0y and tire forces Fy,, Fy,.
The tire forces are generated through slip angles
which are defined as a ratio of the wheel sideways
velocity to its forward velocity (Eq.1). The vehicle
cg velocity components are transferred to the
wheels yielding the slip angles. One approxi-
mation of tire forces is a linear relationship with
the slip angle through cornering coefficients Cy
and C,. These coefficients take into account the
total effect of both tires along each axle, hence,
the ’bicycle’ name. The resulting tire forces
are Fy = Croy and F, = C,a,. Equation 2 is an
equivalent equation but modified to represent a
constitutive law of a linear resistance element.

Slip angles:

w
0€f=5f*v+a

bw —v
o, =

Tire Forces:

Fr= %(m- (v+aw)) o
Fy— % (bo—v)

Figure 3 shows a bond graph of the bicycle model
with linear tires. Inertia elements in integral
causality are attached to each body fixed velocity.
This is consistent with the idea of flow output from
the body and effort input into the body. The tires
are modeled as resistive elements applying an ef-
fort into the system based on the kinematic rela-
tionship at the wheels. When using body fixed co-
ordinates, modulated gyrators are required to pro-
duce the cross-product terms that emerge from Eu-
ler’s equations (see (Karnopp 1976)). A modulated
transformer is also introduced for the &u term of
the front wheel slip angle.
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Figure 3: Bicycle Model (FWS)
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2.2 Bicycle Model - RWS

The addition of rear wheel steer to the bicycle
model simply introduces a steering angle input to
the rear wheel. The slip angle for the rear adds
a new term J,. The bond graph changes with the
introduction of another modulated transformer that
connects the forward velocity u to the zero junction
of the resistive element for the rear tire.

Figure 4: Bicycle Model with Rear Wheel Steer
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Figure 5: Bond Graph of Bicycle Model with Rear
Wheel Steer

C./u 1 Ci/u

2.3 Bicycle Model (RWS) - Caster

The steered wheels of a vehicle are positioned with
a caster angle (the angle between the steering axis
of the wheel and the vertical axis). The caster ef-
fect provides a stabilizing effect on the vehicle in
the absence of a steering torque by straightening
out the wheel due to the caster trail moment arm
and the lateral force from the ground. Figure 6

shows a diagram of a vehicle with caster effects.
The bond graph of the bicycle model with caster
effect has additional inertias to account for the ro-
tation of each wheel about its diametral axis (an
approximation about the steering axis). The trail
distance is a moment arm about which the tire force
acts on, therefore, a transformer element is applied
to the bond graph between the rotational velocity
of the wheel ®,, and the zero junction to the resis-
tive element representing each tire.

Figure 6: Bicycle Model with Caster
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Figure 7: Bond Graph of Bicycle Model with
Caster

2.4 Bicycle Model (RWS) - Caster and Bushing

Bushings are introduced in vehicle joints and at-
tachment point to address noise, vibration, and
harshness concerns. This model sheds light on the
lateral component of the wheel attachment bush-
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ing. The other components of the bushing (lon-
gitudinal and torsional) are omitted here but can
be added to this model. The lateral component
of the bushing is modeled as spring that is mod-
ulated by the relative velocity between the chassis
and the wheel. As a result, the wheels are con-
sidered as rigid bodies with their own body fixed
coordinates with mass m,, and diametral moment
of inertia J,,. The velocites of front wheels are uy,
vy, and @,,, while the velocities of the rear wheels
are u,, v,, and ®,,. The model will be simplified
by allowing u s = u, = u due to small angle approx-
imations of the wheel relative to the vehicle body.
As a result the bond graph has the following addi-
tional elements: inertia for each wheel in the lat-
eral direction, compliance and resistive elements
for the bushing, and modulated gyrators coupling
the wheel forward velocity (same as chassis body
forward velocity) to the wheel lateral velocity.

Figure 8: Bicycle Model with Caster and Bushing

2.5 Extended Bicycle Model

An extended bicycle model is an extension of the
bicycle model which has only planar vehicle dy-
namics. The model has four wheels with inde-
pendent steering control and independent wheel
torque (brake and traction) control. Limit handling
performance is typically the motivation for using
this model. In such cases, the tire-road friction
limit is approached during simultaneous steering
and brake/throttle input, thus, more sophisticated
tire models are needed for properly analysing this
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Figure 9: Bond Graph of Bicycle Model with
Caster and Bushing

system. The Dugoff tire model is selected and is
discussed later in this section.

The extended bicycle model still has the same body
fixed velocities u, v, and ® and as a result the
same inertia properties m and J. The velocities of
the wheels are now about the rotation axis of the
spinning wheels (the bicycle model was previously
concerned about the diametral axis of the wheels)
with mass properties m,, and J,,. The steering angle
input is extended to four individual steering inputs
(817, 67, &, and 6,,) while the torque inputs at
each wheel are (77, 7,¢, 7, and 7,,). Additional
parameters include cg to axle distances a and b, cg
height hg, half track distance %, wheel radius R,,,
and front and rear roll stiffness kff and k¢,

In contrast to the bicycle model with linear tires,
the extended bicycle model requires a nonlinear
tire model that captures realistic tire behavior at
the friction limit of tire-road interaction both in
the lateral F, and longitudinal directions Fy. The
Dugoff tire is an example of a tire model that can
provide such information at the cost of only a few
additional vehicle states including: slip s, slip an-
gle o, and normal force N (Dugoff, Fancher, and
Segel 1970). The normal force is introduced be-
cause changes in lateral and longitudinal accelera-
tion causes changes in tire loadings. This normal
force distribution, which is also influenced by roll
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Figure 10: Extended Bicycle Model

stiffnesses, produces effects on the generated lat-
eral and longitudinal tire forces. The definitions
of slip, slip angle, and algebraic normal force are
presented below.

Longitudinal Slip (s):
. Rvoy—(u—0)
l prm—
! RO f|
o Ry — (u+ 5 )
rf = |Rw(l)rf| 3)
o — R, @ — (u— %(O)
e |walr’
o Ry — (u+ )
" |warr|
Lateral Slip Angle ():
vV+am
Oy = Oif = u—2Yw
2
V+aw
(er:5rf—u+yw
2
ba) —v S
oy = Ir
ba) —v
Oy = @ rr

Algebraic Normal Force (N):

1 (bg—heaong hy ke
Nip— —m| 25 8long s

If = m< ath — Ajgt W/2 ka +k’[r
lm bg h along Mg kT_/
2 a+b latw/Zka—i—kTr
lm ag+h ag + fgliong _a E k’L’,
2 a+b mw/Zka+kT,
lm ag+h along taq & k‘L'r
2 a+b mw/Zka—i—kTr

)

2.6 Extended Bicycle Model - Drivetrain

An alternative drivetrain configuration is devel-
oped for the extended bicycle model. Instead of
individual torques applied at the wheel (as is the
case for in-wheel motors) the more conventional
approach is to model an engine torque that then
gets distributed to the wheel. The specified engine
torque 7, is tranferred to the front and rear of the
vehicle through a center differential by a factor f,..
The axle torque is further transformed into individ-
ual left and right driveshaft torques through a lim-
ited slip differential resulting in all four individual
traction torques (7;¢, T,f, T, and 7,,). In addition
to the traction torque, a separate brake torque is ap-
plied to each wheel (T, T,;, Ty, and Tp,,). All of
these variables provide the ability to test strategies
of integrated chassis control relating to the differ-
entials, brake, and steering. Note: the bond graph
presented here will be a front wheel steer configu-
ration (rws can be easily integrated).

3 CONCLUSION

The bond graph modeling approach has been
demonstrated as a tool to develop multisystem ve-
hicle dynamic system models. The system mod-
els are created with thoughtful detail yet simple
enough to trace specific dynamic behavior of the
system. Equations of motion are readily available
in first order form lending itself useful for com-
puter simulation. Causality and power bonds are
used to relate multi-energy systems making bond
graphs suitable for automotive research and devel-
opment. As long as causality is preserved, different
subsystems can be introduced to the model. Creat-
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Figure 11: Bond Graph of Extended Bicycle Model
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Figure 12: Extended Bicycle Model with Drive-
train

ing vehicle dynamics models and using the bond
graph method such as the examples presented here
will provide time and cost savings. These models
can be integrated within any stage of virtual simu-
lation and control providing data for performance
analysis.
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Figure 13: Bond Graph of Extended Bicycle Model
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