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ABSTRACT 

The demand for new technologies especially in nonlinear forms is ever-increasing in order to provide 

effective linearized models. Linearization becomes a problem for linear control techniques when operation 

point change. An alternative for the analysis of non-linear systems modelled by bond graphs is presented. 

It is well known that the analysis and synthesis of nonlinear systems is not a simple task. Hence a first step 

can be to linearize this nonlinear system on an operation point. An approach to obtain linearization for 

consecutive points along a trajectory in the physical domain is proposed an this starts with the nonlinear 

system linearization on an operation point. This type of linearization determines a group of linearized 

systems which is an approximation close enough to original nonlinear dynamic. We called this methodology 

dynamic linearization. The nonlinear model of a synchronous machine is presented as a case study. 

Applying the proposed methodology we show the advantages of using the dynamic linearization 

Keywords: Linearization, Continuous systems, Bond Graph approach. 

1 INTRODUCTION 

The bond graph is an useful and important 

tool for physical system modelling. This is 

based on power representation; it enables the 

description of the system through energy 

storage and dissipate elements (Karnopp, 2000). 

Bond graph can represent a variety of energy 

types, whose junction structure can give a 

valuable information of the properties of the 

physical system (Borutzky 2011). 

Bond graph modeling for nonlinear systems 

has been widely applied. However, the control 

of nonlinear systems is not an easy subject in the 

physical domain. Hence, the linearization of 

nonlinear systems is an alternative way to 

design controllers for this type of system. The 

power and energy analysis in linearized 

physical systems in a bond graph approach is 

proposed in (Karnopp, 1977). Karnopp states 

that each nonlinear element can be re- placed by 

a linearized system, which can be represented 

by a bond graph. A procedure to build a 

linearized bond graph from nonlinear bond 

graph is presented in (Gonzalez, 2015). 

Recently, a methodology to linearize nonlinear 

systems represented by multi-bond graphs has 

been presented in (Gonzalez, 2019). 

In this paper, the linearization of a class of 

non-linear systems at consecutive points in a 

bond graph approach is proposed. The product 

of state variables is the class of nonlinear 

systems analyzed in this paper, since they are 
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the ones that characterize most electrical 

machines.  Consecutive points in the linearization 

can be considered a trajectory then this 

methodology can be used to control a class of 

nonlinear systems based on multiple linearization. 

A synchronous generator is the base case study 

in this paper. 

Some interesting papers using dynamic 
linearization can be cited: In (Dessau, 1972) a 
construction of a state estimator is given for a 
class of nonlinear systems S in a region of 
approximation Ω about the origin, the estimator 
is exact in Ω if the dynamically linearized 
approximation S1 to S  in Ω passes a rank test is 
proposed. In (Yu, 2016) it is proposed a data-
driven iterative learning control framework for un- 
known nonlinear non-affine repetitive discrete-
time SISO systems by applying the dynamic 
linearization technique. In (Bennoune, 2007) a 
nonlinear controller combining exact linearization 
technique with dynamic extension algorithm is 
designed. 

Section 2 describes the model of a 

synchronous machine with its corresponding 

nonlinear bond graph. The linearization of the 

synchronous generator at an equilibrium point is 

proposed in Section 3. In Section 4, the dynamic 

linearization applied to this generator is presented. 

Simulation results of the linearized synchronous 

genera- tor at multiple points with control 

effects are shown in Section 6. Finally, Section 

7 gives the conclusions. 

2 SALIENT POLE SYNCHRONOUS MA- 

CHINE MODEL 

Synchronous generators form the principal 

source of electric energy in power systems. Many 

large loads are driven by synchronous motors, and 

synchronous condensers are sometimes used as a 

means of providing reactive power compensation 

and controlling voltage. These devices operate on 

the same principle and are collectively referred 

to as synchronous machines. 

Many books and papers have used the 

traditional mathematical model of a 

synchronous machine (Anderson 1977, Kundur 

1994, Smith 1993). Nevertheless in (Kamwa, 

1997) a synchronous machine model 

considering a class of equivalent circuits with 

sufficient flexibility to permit the introduction 

of an arbitrary num- ber of damper windings. 

Also, the singular perturbations method is 

applied to synchronous machine with- out 

damping windings in (Duric, 1997). The 

transfer function block diagram model of a 

generator has been employed to analyze 

generator dynamic characteristics in (Saidy, 

1996).These synchronous generators are 

powered by hydroelectric or thermoelectric 

plants (Anderson 1977, Kundur 1994). The 

schematic diagram of the cross-section of a 

synchronous generator with a pair of poles is 

illustrated in Fig. 1. The field winding uses 

direct current and producing a magnetic field 

that induces voltages in the three phases in the 

armature windings. 

Figure 1: Schematic diagram of a three-phase 

synchronous machine. 

The circuits used for the analysis of a 

synchronous generator are shown in Fig. 2. The 

three-phase armature winding represents the stator 

circuits carrying current in all three phases and the 

field winding describes the rotor circuit. 

The following assumptions are made: 

S1 : the stator windings are sinusoidally 

distributed along the air-gap 

S2 : the stator slots cause no appreciable 

variation of the rotor inductances with rotor 
position 

S3 : magnetic hysteresis is negligible 

S4 : magnetic saturation effects are negligible 

Consider the representation of a synchronous 

generator of Fig. 2.  
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Figure 2: Stator and rotor circuits of a 

synchronous machine. 

In this Fig. 2, we can identify the followings 

elements: 

• a, b, c : stator phase windings. So, ia, ib, ic denote

the stator phase currents; va, vb, vc denote the stator

phase voltages, ra, rb, rc denote the stator phase

resistances and Laa, Lbb, Lcc denote the stator

phase   self-inductances.

• F : field winding with iF and vf denote the field

cur- rent and voltage, respectively; rF denotes

the field resistance and LF denotes the field self-

inductance.

• D : d-axis damping circuit with iD and vD denote

the damping current and voltage on the d-axis, re-

spectively; rD denotes the damping resistance on

the d-axis and LD denotes the damping self- in-

ductances on the d-axis.

• Q : q-axis damping circuit with iQ and vQ denote the

damping current and voltage on the q-axis, respec-

tively; rQ denotes the damping resistance on the q-

axis and LQ denotes the damping self- inductances

on the q-axis.

The synchronous generator of Fig. 2 is

represented by six windings are magnetically 

coupled. The magnetic coupling between the 

windings is a function of the rotor position. The 

instantaneous terminal voltage v of any winding 

is in the form, 

     
•

v t ri t t   (1)

where λ (t) is the flux linkage, r is the winding 

resistance and i (t) is the current with positive 

directions of stator currents flowing out of the 

generator terminals. 

A great simplification in the mathematical 

description of the synchronous machine is 

obtained from the Park´s transformation. The 

effect of Park´s transformation is simply to 

transform all stator quantities from phases a, b 

and c into new variables the frame of reference of 

which moves with the rotor. Thus, by definition 

(Anderson, 1977) 

0dq abci =Pi
(2)

where the current vectors are defined as, 

0

0     and     

a

dq d abc b

q c

i i

i i i i

i i

   
   

    
     

(3)

and the Park´s transformation matrix is 

1 1 1

2 2 2

2 2
cos cos cos

3 3

2 2
sin sin sin

3 3

P
 

  

 
  

 
 
 
    

      
    

    
     

    

(4)

The angle between the d-axis and the rotor is 

given by 

2
Rt


    

(5)

Where R is the rated angular frequency in 

rad/s and δ is the synchronous torque angle in 

electrical radians. Similarly, to transform the 

voltages and flux linkages, 

0dq abcv Pv
(6) 

0dq abcP 
(7)
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The mathematical model of the synchronous 

generator considering the mechanical 

subsystem is described by 

0 0 0

0 0 0
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0 0 0 0 0
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(8)

with, 

d d dD dF d

D dD D DF D

F dF DF F F

L M M i

M L M i

M M L i







     
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
     
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(9)

and,       
q q qQ q

Q qQ Q Q

L M i

M L i





     
     

      (10)

then the complete system determines a 

nonlinear system. 

A bond graph model of this synchronous 

generator is shown in Fig. 3. 

It can be seen that the elements that are part 

of the bond graph of the synchronous generator 

of Fig. 3 have been given in (7) and the I-fields 

defined by I : MdDF is described by (8) and (9) 

determines I : MqQ. The next section describes 

how to linearize systems modelled by bond 

graphs. 

Figure 3: Nonlinear bond graph of the 

synchronous generator. 

3 LINEARIZATION IN BOND GRAPH 

When nonlinear systems defined by (Rugh, 

1996) 

        0 0,    with   x t f x t u t x t x 
(11)

with the state   nx t  and the input   pu t 

have small disturbances around some 

equilibrium point can be linearized. 

The linearized system is given by, 

     x t A x t B u t     
(12)

where Aδ and Bδ are the matrices of partial 
derivatives evaluated on the nominal trajectory, 
that is, 

    

    

,

,

x t u t

x t u t

f
A

x

f
B

u













(12)

where     ,x t u t is the nominal trajectory. 

The linearized bond graphs are built 

according to the steps described in the following 

Procedure 1. 

Procedure 1 

1. In the vicinity of the nominal trajectory

    ,x t u t
we have the linearization. 

2. The MTF and/or MGY elements of the

nonlinear bond graph are changed by TF

and/or GY modulated by, 
    ,x t u t

respectively. 

3. New causal paths are included. First, the

nonlinear causal paths begin at the (Ii, Ci)

element through one of (MTF, MGY ) 

modulated by a state variable and arrive at 

(Ij, Cj) are identified. Hence, the new causal 

paths are constructed by replacing (Ii, Ci) 

and (Ij, Cj) by (MSei, MSfi) evaluated at the 

nominal trajectory. 

This procedure is a simplified version of the 

method- ology presented in (Gonzalez, 2015). 

Fig. 4 shows the first part of linearization 

process for the nonlinear bond graph of the 

synchronous generator shown in Fig. 3. 
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Figure 4: A step of the linearization for the 

synchronous generator. 

Also, the nonlinear causal paths are: (3 - 19 - 

17 - 18) ; (11 - 14 - 15 - 18); (18 - 17 - 19 - 3) 

and (18 - 15 - 14 - 11) determining the new 

linear causal paths that are illustrated in Fig. 5. 

Figure 5: Additional causal paths for the 

linearization. 

Joining the bond graphs of Figs. 4 and 5, the 

linearized bond graph of the synchronous 

generator is shown in Fig. 6. 

The mathematical model of the linearized 

bond graph of Fig. 6 can be obtained according 

to (Gonzalez, 2015). The linearization of 

multiple operating points is presented in the next 

section. 

Figure 6: Linearized bond graph for the 

synchronous generator. 

4 DYNAMIC LINEARIZATION 

The synchronous generator linearized in the 

physical do- main can be shown in Fig. 7. 

Figure 7: Scheme of the linearized synchronous 

generator. 

Figure 8: Dynamic linearization for the 

synchronous generator.  

There is a set of inputs and outputs and the 

equilibrium point. When linearization is applied 

to consecutive points along a path, this 

linearization results in a group of linearized 

systems. These points of the trajectory 

determine the dynamic linearization. When the 

system is linearized at an operation point, the 

size of the neighborhood is considered small 
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and then continues to feed the state variables by 

changing the operation point to sweep the 

original signal as shown in Fig. 8. 

The incremental inputs to each block 

determine the size of the neighborhood of that 

block. The blocks of Fig. 8 can be recursive with 

the proper programming and then a set of points 

that are part of a trajectory can be obtained. 

5 SIMULATION RESULTS 

In order to show the effectiveness of the 
proposed methodology to get reduced models in 
a bond graph approach, the performance of the 
state variables are depicted. The numerical 
parameters are the following: Vd = 1.554V, Vq 
= 1.33, TL = −10.66N • m, rd = 0.00077Ω, rq 
= 0.00077Ω, rF = 0.00021Ω, rD =0.0049Ω, rQ = 
0.0017Ω, Ld = 2.2mH, MdD = 2mH, MdF = 
2mH, LD = 2.1mH, MDF = 8.4mH, LF = 2.2mH, 
Lq = 2mH, MqQ = 1.8mH, LQ = 2.1mH and J 

= 1.8807 × 105kg • m2. The values of the steady state 

are:   id0 = 1.627275 × 104A, iq0 = 1.958465 

× 104A, iF 0 = 4.208357 × 104A and w0 = 
326.7256rad/s. 

Figs. 9, 10 and 11 show the performance of the 

state variables when a single step of dynamic 

linearization is applied. Comparing both linear 

and nonlinear dynamics.  

Figure 9: Electrical currents on d axis. 

Figure 10: Electrical currents on q axis. 

Figure 11: Angular velocity. 

Now, applying 5 steps in dynamic 

linearization, Figs. 12, 13 and 14 illustrate the 

behavior of the state variables.  

Figure 12: Electrical currents on d axis. 

Figure 13: Electrical currents on q axis. 

Figure 14: Angular velocity. 
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By increasing the number of steps of the 

dynamic linearization, the response of the 

linearized system approaches the response of the 

original system. Once it has been that the model 

of the linearized synchronous generator has a 

good performance compared to the nonlinear 

model then a control system can be ap- plied for 

the torque and to regulate the excitation to the 

generator as shown in Fig. 15. 

Figure 14: Closed loop system with a linearized 

model. 

The main advantage of the scheme of Fig. 15 

is that the design of the controllers will be 

simpler because it is a control of linearized 

systems. 

6 CONCLUSIONS 

The linearization of a synchronous generator 

in bond graph has been presented. The 

connection of a multiple linearization scheme 

representing a dynamic linearization in a bond 

graph approach is proposed. The increase in the 

number of steps in the dynamic linearization 

allows to obtain a degree of closeness with the 

exact values of the nonlinear model. The 

behavior of the generator variables with one 

step and 5 steps have been shown. The design 

of linear controllers for synchronous generators 

with dynamic linearization is a direct extension 

of the proposal made in this paper. 
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