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ABSTRACT 

Biomechanical models are widely used in rehabilitation, posture prediction studies, and for 

injury risk assessment (Gatton, Pearcy, and Pettet 2011). With ride comfort becoming 

important to vehicle manufacturers, there’s a demand for a universal, quantitative ride comfort 

metric (Da Silva 2002).  Mechanical inputs from the ride to the passenger body could cause 

discomfort (ISO 1997) and the dominant discomfort-causing motions lie in the body’s sagittal 

plane (longitudinal plane dividing a symmetrical body into left and right sections) (Kozawa, 

Sugimoto, and Suzuki 1986). This paper develops a biomechanical model of the sagittal spine 

using bond graphs. The model is computationally cost-effective as it employs fewer degrees of 

freedom than available models (Bazrgari, Shirazi-Adl, and Arjmand 2007; Amiri, Naserkhaki, 

and Parnianpour 2019) and is capable of estimating internal loads and displacements with 

sufficient accuracy. The model could be used for spinal load assessments and ride comfort 

studies in vehicle dynamics. 
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1 INTRODUCTION 

Passenger vehicle ride quality metrics have 

traditionally been subjective and sometimes 

contradictory (Jacklin 1936; Dieckmann 

1958; Sperling and Betzhold 1957; Yang et 

al. 2009; Sharma 2016; Enders et al. 2019).  

The authors hypothesize that ride comfort 

can be correlated with the amount of motion 

induced in certain degrees of freedom of the 

passenger’s body due to excitations from the 

seat. To estimate said motions, a sufficiently 

accurate biomechanical model of the sagittal 

spine is required.  This paper develops such 

a model using bond graphs, including 

sufficient degrees of freedom for such study. 

There have been biomechanical passenger 

models developed in the literature for 

studying vehicle seat or suspension (Gohari 

and Tahmasebi 2015; Wisner, Donnadieu, 

and Berthoz 1964). Most such models have 

exclusively studied the vertical motion 

within the body and have also treated the 

entirety of the body as a lump, with few 

internal degrees of freedom (Oncescu et al. 

2020; Jamali Shakhlavi, Marzbanrad, and 

Tavoosi 2018; Cho and Yoon 2001; 

Guruguntla and Lal 2020). The passenger 
model will have to include the mechanical 

segments of the upper body, as it was 

demonstrated in (Kozawa, Sugimoto, and 
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Suzuki 1986) that it is input vibrations from 

the seat (and not the floor) that passengers 

feel the most. The human upper body’s 

mechanical structure essentially consists of 

the human spine, which is stretched between 

the pelvis and the head (Tözeren 1999). 

Therefore, a biomechanical model of the 

human spine is developed in this study using 

bond graphs (Paynter 1958). To estimate 

passenger comfort in a cruising vehicle, a 

planar motion analysis in the sagittal plane 

would suffice, which includes two 

translational and one rotational degrees of 

freedom for each vertebra in the spinal 

column. This model could investigate how 

the vehicle’s heave and pitch motions 

propagate through the spine. Using 

curvilinear coordinates in the sagittal plane, 

the model could express all planar motions 

for the spinal column. These motions 

include axial compression and bending 

rotation which are associated with chronic 

back pain; and transverse shear which 

indicates pressing on the spinal cord, which 

could lead to acute pain and, in extreme 

cases, paralysis. This model could later be 

integrated with various suspension control 

strategies and help determine which one 

induces the smallest internal motion, which 

represents the least pain, which in turn could 

be thought of as the highest comfort. The 

proposed bond graph model includes every 

bond graph element and could be used for a 

detailed study of planar biomechanics. 

Furthermore, such a model helps attain 

quantitative indexes for ride comfort instead 

of the traditional qualitative metrics. 

Because of the spine’s inherent curved S-

shape (Ashton-Miller and Schultz 1997), 

even if it is only the vehicle’s vertical 

vibration input that is to be considered, its 

mechanical effects within the body cannot 

be properly accounted for using a one-

directional, vertical model. The spinal 

column itself is made up of three major 

vertebral sections, the lumbar spine 

(lowermost section), the thoracic spine 
(middle section), and the cervical spine 

(uppermost section) which are distinguished 

from one another according to changes in 

the direction of curvature of the spine 

(Ashton-Miller and Schultz 1997) as seen 

and named in Fig.1.  

 

Figure 1. The Sagittal Spine and its built-in curvature, source: 

(https://radiologykey.com/spine-5/ 2016) 

Decades-long studies have shown that 

lower-back pain, a medical condition 

involving the lumbar spine, is amongst the 

most common and costly musculoskeletal 

disorders (Webster and Snook 1994; 

Praemer, Furner, and Rice 1999). Amidst the 

three sections of the spine, the lumbar spine 

is prone to the highest chronic/acute pain 

(Praemer, Furner, and Rice 1999), is closest 

to the load input (hip cushion) for a 

vehicle’s passenger (Abernethy et al. 1980), 

is under the highest weight portion of the 

upper body (De Leva 1996), and has the 

highest range of motion (Ashton-Miller and 

Schultz 1997). This makes the lumber spine 

be of utmost importance when building a 

biomechanical model of the upper body.  

2 MODELING AND METHODS 

2.1 Structure 

The lumbar spine consists of 5 vertebrae 

called L1 through L5 and in between them 

there are intervertebral compliant discs 

which provide stiffness and damping 

(Ashton-Miller and Schultz 1997). 

According to (Kozawa, Sugimoto, and 

Suzuki 1986), the most prominent input 

motions from the seat to the body act within 

the vehicle’s pitching plane which 

encompasses the vehicle’s heave and 
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longitudinal translations, and its pitch 

rotation. In anatomical terms, that plane 

would be the body’s sagittal plane with 

respective degrees of freedom (DOF) of 

axial displacement, shear displacement, and 

flexion/extension rotation. Hence, any 

vertebra or inertia has 3 DOFs in the sagittal 

plane. Due to its discussed sensitivity and 

importance, the lumbar spine is extensively 

modeled in this study with its internal 

vertebral degrees of freedom, compliances, 

resistances, and inertias. The thorax, 

however, is 10 times more massive than 

each lumbar vertebra (De Leva 1996). 

Because of being attached to the ribcage, the 

thoracic vertebrae are much more confined 

(higher intervertebral stiffness in the 

thoracic region); making the thoracic 

intervertebral motions be much smaller than 

that of the lumbar region in sagittal motions 

(Meakin et al. 2008). The cervical spine is 

not under much load (Walker, Harris, and 

Pontius 1973), and the neck in the sagittal 

plane is basically a hinge for the head’s 

rotation (McGill et al. 1994). 

Therefore, the thoracocervical spine will be 

modeled as a rigid thorax alongside a 3DOF 

joint for the neck. This rigid thorax+neck is 

in turn attached to a lump considered for the 

head. A schematic of the sitting passenger 

model is given in Fig.2. 

 

Figure 2. Schematic of the seated passenger model 

This will make up for a 22-DoF model, 

including 7*3 DOFs for the 5 lumber 

vertebrae, the rigid thorax, and the head; in 

addition to one vertical degree of freedom 

for the sacrum and pelvis (the spine’s “seat” 

rigidly attached to the hip). 

Apart from the vertebrae which are modeled 

as inertias, and intervertebral discs which are 

modeled as spring and dampers; there are 

muscles, ligaments, and tendons attached to 

the vertebrae which are collectively soft 

tissue. They apply forces to the vertebrae 

and help with stabilizing the spine’s motion. 

In this study, soft tissues are modelled as 

passive, rotary elements that apply restoring 

moments; as that is their most prominent 

effect in the sagittal motions of interest 

(Shirazi-Adl 2006).  

A geometric schematic of the lower most 

section of the passenger model (Up until the 

L4 lumbar joint) is brought in Fig. 3, where 

the sprung mass vertical velocity is the input 

to the model which passes through the 

compliance of hip-cushion + buttocks. 

Pelvis is a rigid inertia which is the 

foundation on which the upper body 

essentially sits and can only move vertically. 

Then there are the first two lumbar vertebrae 

(L5-L4) and their intervertebral joints. 

It’s note-worthy that since the passenger 

model is essentially a tower of inertial 

elements with compliances In between them, 

the rest of the model repeats the same 

pattern; as thorax and head are assumed to 

be rigid and the same all-DOF compliance 

kind of joint will be modeled between the 

not-shown elements. 
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Fig 3. Schematic of the lowermost section of the passenger model 

The input velocities to the passenger model 

come from the inertial vehicle frame and 

include U (longitudinal), and W (heave) 

velocities and the pitch angular velocity p. 

The intervertebral discs are modelled with 

all-degree compliances which are shown in 

Fig.3 with a rather non-conventional 

symbol. These elements will provide 

stiffness and damping for all modeled 

degrees of freedom, along the disc’s axis for 

axial compression and perpendicular to it for 

shearing motion, as well as rotary 

compliance and resistance. Fig. 4 brings a 

schematic description of these elements. 

 

Figure 4. Schematic of the all-DOF compliance, used in modeling 

the intervertebral discs 

 

2.2 Geometry 

Fig.5 schematically shows two consecutive 

lumbar vertebrae (T and B subscripts refer to 

the Top and Bottom) along the spinal 

column with their velocities in body-fixed 

coordinates. Each inertial element has both 

tangential Vt and normal Vn translational 

velocities with respect to the spinal curve 

and an angular velocity  in CCW rotation 

in the sagittal plane. 

 

Figure 5. geometric diagram of two consecutive inertias T (top) and 

B (bottom), and their body-fixed coordinates 

The tangential velocity direction makes an 

angle  with the horizontal. The direction of 

the axial compliance for two consecutive 

vertebrae is taken to be that of the line that 

connects their centers of mass. The direction 

of the shear compliance is perpendicular to 

the axial direction towards positive 

curvature. The axial compliances make an 

angle  with the horizontal. Each vertebra 

has its own  but two consecutive vertebrae 

share a . The difference between  and  is 

defined as the  angle which is required for 

finding the components of compliance 

forces along tangential and normal 

directions for each vertebra. 

 By integrating the projections of the body-

fixed velocities of each inertia in the inertial 

x and z directions, their inertial position will 

be found as: 

𝑥(𝑡) = ∫(𝑉𝑡 cos 𝜃 + 𝑉𝑛 sin 𝜃)𝑑𝑡 + 𝑥0 𝑒𝑞. (1)

𝑧(𝑡) = ∫(𝑉𝑡 sin𝜃 − 𝑉𝑛 cos 𝜃)𝑑𝑡 + 𝑧0  𝑒𝑞. (2)
 

Now the  angle can be calculated as: 

tan𝜑𝑇𝐵 =
𝑧𝑇 − 𝑧𝐵

𝑥𝑇 − 𝑥𝐵

𝑒𝑞. (3) 

The  angles will be uniquely found since 

both the numerator and the denominator in 

the expression for its tangent are known and 

not just their ratio.  

Since the equations of motion will be 

derived using bond graph modeling 

(Karnopp, Margolis, and Rosenberg 1990), 

it is necessary to find the components of the 
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vertebral velocities along compliance 

directions. 

The tangential velocity vector makes an 

angle  with the direction of axial 

compliance, which is the same angle that the 

normal velocity makes with the direction of 

shear compliance and it is found as follows: 

𝜓𝑇𝐵 = 𝜃𝑇 − 𝜑𝑇𝐵 ;  𝜓𝐵𝑇 = 𝜃𝐵 − 𝜑𝑇𝐵 𝑒𝑞. (4 − 5) 

2.3 Kinematics 

The next step is to project the body-fixed 

velocities of two consecutive vertebrae 

along compliance directions to find the 

relative velocity across flexible elements. 

The velocity across compliant elements 

would be the relative velocity between the 

vertebrae’s disc interfaces. Since vertebrae 

have a rather significant thickness (Ashton-

Miller and Schultz 1997), the disc 

interface’s velocity would not be the same as 

the center of mass’s. Fig.6 schematically 

shows consecutive vertebrae with half-

thicknesses DB and DT and their body-fixed 

velocities. 

 

Figure 6. Velocity transfer from the center of mass to the 

disc interface due to vertebra thickness 

Since the connecting displacement vector 

from the center of mass to the disc interface 

for each vertebra is in the tangential 

direction (with magnitude DB or DT), the 

interface (Vint) will have the same tangential 

velocity, and from velocity transfer its 

normal velocity would be equal to: 

𝑉𝐵,𝑖𝑛𝑡
𝑛 = 𝑉𝐵

𝑛 + 𝐷𝐵𝜔𝐵 𝑒𝑞. (6) 

𝑉𝑇,𝑖𝑛𝑡
𝑛 = 𝑉𝑇

𝑛 − 𝐷𝑇𝜔𝑇 𝑒𝑞. (7) 

As the velocity vectors make the angle  

with the compliance directions the interface 

velocity vectors are projected onto axial and 

shear compliance directions as follows: 

𝑉𝑇
⃗⃗⃗⃗ = (𝑉𝑇

𝑡 cos𝜓𝑇𝐵 − 𝑉𝑇,𝑖𝑛𝑡
𝑛 sin𝜓𝑇𝐵)𝑒𝑎⃗⃗  ⃗ + (𝑉𝑇

𝑡 sin𝜓𝑇𝐵 + 𝑉𝑇,𝑖𝑛𝑡
𝑛 cos𝜓𝑇𝐵)𝑒𝑠⃗⃗  ⃗𝑒𝑞. (8) 

𝑉𝐵
⃗⃗⃗⃗ = (𝑉𝐵

𝑡 cos𝜓𝐵𝑇 − 𝑉𝐵,𝑖𝑛𝑡
𝑛 sin𝜓𝐵𝑇)𝑒𝑎⃗⃗  ⃗ + (𝑉𝐵

𝑡 sin𝜓𝐵𝑇 + 𝑉𝐵,𝑖𝑛𝑡
𝑛 cos𝜓𝐵𝑇)𝑒𝑠⃗⃗  ⃗𝑒𝑞. (9) 

Where 𝑒𝑎⃗⃗⃗⃗ , 𝑒𝑠⃗⃗  ⃗ represent the unit vectors for 

axial and shear directions, respectively. Now 

the relative velocity vector, positive in 

compression, across any intervertebral disc 

becomes: 

𝑉⃗ 𝑟𝑒𝑙,𝑇𝐵 = 𝑉𝐵
⃗⃗⃗⃗ − 𝑉𝑇

⃗⃗⃗⃗ = 𝑉𝑟𝑒𝑙,𝑎𝑒𝑎⃗⃗  ⃗ + 𝑉𝑟𝑒𝑙,𝑠𝑒𝑠⃗⃗  ⃗ 𝑒𝑞. (10) 

Also, the relative angular velocity vector 

across the discs, will be: 

𝜔𝑟𝑒𝑙,𝑇𝐵 = 𝜔𝐵 − 𝜔𝑇 𝑒𝑞. (11) 

Now with the kinematics of the model figured out, 

one can move on to drawing the model’s bond 

graph and deriving the equations of motion. 

2.4 Bond Graphs 

Bond Graph modeling (Paynter 1958; 

Karnopp and Rosenberg 1970; Karnopp, 

Margolis, and Rosenberg 1990) is a 

generalized approach to modeling dynamic 

systems through recognition of power 

transport in multi-domain systems. Since 

bong graph modelling is essentially an 

energy method, knowledge of the system’s 

velocity configuration suffices for obtaining 

and solving the equations of motion, and one 

wouldn’t need to investigate accelerations 

for the same purpose. Since there are too 

many states in the model for its bond graph 

to fit a page, the bond graph for a typical 

vertebra is given in Fig.7. 

 

Figure 7. Bond Graph for a typical vertebra 
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This bond graph will be augmented with a 

complementary bond graph which connects 

two consecutive inertias, bringing in the 

compliances and resistances that act on each 

inertial element. The relative axial (𝑉𝑎) and 

shear (𝑉𝑠) velocities are represented as flow 

sources in the auxiliary bond graph in Fig.8. 

 

Figure 8. Complementary Bond Graph connecting two 

consecutive inertias 

As noted in Fig.7 and Fig.8, the bond graphs 

are causal and equations of motion can be 

explicitly derived in integral causality. 

2.5 Equations of Motion 

The states variables in the model will be the 

velocities of the inertias in all their 

respective velocity directions: including 

tangential Vt, normal Vn, and rotational ωr; 

and also the displacements of the 

compliances in their respective relative 

directions, namely axial qa, shear qs, 

rotational qr, considered positive in 

compression.  

Now the equations of motion for the top 

inertia are: 

𝑚𝑉̇𝑇

𝑡
= 𝑚𝑇𝜔𝑇𝑉𝑇

𝑛 + 𝐹𝑎 cos 𝜓𝑇𝐵 + 𝐹𝑠 sin𝜓𝑇𝐵 − 𝑚𝑔sin 𝜃𝑇 𝑒𝑞. (12) 

𝑚𝑉̇𝑇

𝑛
= −𝑚𝑇𝜔𝑇𝑉𝑇

𝑡 − 𝐹𝑎 sin𝜓𝑇𝐵 + 𝐹𝑠 cos𝜓𝑇𝐵 − 𝑚𝑔cos 𝜃𝑇 𝑒𝑞. (13) 

𝐽𝑇𝜔̇𝑇 = 𝑀𝑟 − 𝑀𝑝𝑇
𝑒𝑞. (14) 

And for the bottom inertia: 

𝑚𝑉̇𝐵

𝑡
= 𝑚𝐵𝜔𝐵𝑉𝐵

𝑛 − 𝐹𝑎 cos𝜓𝐵𝑇 − 𝐹𝑠 sin𝜓𝐵𝑇 − 𝑚𝑔sin 𝜃𝐵 𝑒𝑞. (15) 

𝑚𝑉̇𝐵

𝑛
= −𝑚𝐵𝜔𝐵𝑉𝐵

𝑡 + 𝐹𝑎 sin𝜓𝐵𝑇 − 𝐹𝑠 cos𝜓𝐵𝑇 − 𝑚𝑔cos 𝜃𝐵 𝑒𝑞. (16) 

𝐽𝐵𝜔̇𝐵 = −𝑀𝑟 − 𝑀𝑝𝐵
𝑒𝑞. (17) 

Where mentioned forces and moments are 

related to the state-space as follows: 

𝐹𝑎 = 𝑘𝑎𝑞𝑎 + 𝑏𝑎𝑉𝑟𝑒𝑙,𝑎  ; 𝐹𝑠 = 𝑘𝑠𝑞𝑠 + 𝑏𝑠𝑉𝑟𝑒𝑙,𝑠 ;  𝑀𝑟 = 𝑘𝑟𝑞𝑟 + 𝑏𝑟𝜔𝑟𝑒𝑙𝑒𝑞. (18 − 20) 

 𝑞̇𝑎 = 𝑉𝑟𝑒𝑙,𝑎 ;  𝑞̇𝑠 = 𝑉𝑟𝑒𝑙,𝑠 ;  𝑞̇𝑟 = 𝜔𝑟𝑒𝑙 𝑒𝑞. (21 − 23) 

𝑀𝑝 = 𝑘𝑝𝜃 + 𝑏𝑝𝜔 𝑒𝑞. (24) 

In the given equations m, J indicate mass 

and sagittal moment of inertia for each body 

and D denotes their half-thickness. The 

parameters k, b designate stiffness and 

damping constants in their corresponding 

direction, respectively. The subscripts a, s, r 

indicate axial, shear, and rotary degrees of 

freedom, respectively. Also, the subscript p 

indicates the passive rotary reaction of the 

soft tissue pulling on the vertebrae. 

2.6 Initial Conditions 

The initial conditions for all velocities are zero and 

the initial condition for displacements are solved 

for using the steady state equations; since stable, 

linear dynamics systems achieve dynamic 

equilibrium at their static equilibrium position. 

Because of the spinal column’s weight, all 

compliances are in an initial state of displacement. 

Also, the initial center of mass positions and the 

initial 0 angles are brought from literature 

(Pearsall, Reid, and Livingston 1996; De Leva 

1996; Brodeur 1995; Bazrgari, Shirazi-Adl, and 

Arjmand 2007). 

2.7 Validation and Parameter Investigation 

Parameter values are extracted from 

literature; including values for all stiffness 

and damping constants (Keller, Colloca, and 

Béliveau 2002; Kasra, Shirazi-Adl, and 

Drouin 1992; Stokes et al. 2002; McGill et 

al. 1994; Markolf 1970; Owens Jr et al. 

2007; Bazrgari, Shirazi-Adl, and Kasra 

2008; Kim, Kim, and Yoon 2005; 

Guruguntla and Lal 2020; Oncescu et al. 

2020; Cho and Yoon 2001; Jamali 

Shakhlavi, Marzbanrad, and Tavoosi 2018), 

as well as values for masses and moment of 

inertias (Pearsall, Reid, and Livingston 

1996; De Leva 1996). An example of 

literature-investigated parameters is depicted 

in Fig. 9 which is brought from (Keller, 

Colloca, and Béliveau 2002). 
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Figure 9. Typical stiffness values for all degrees of freedom 

employed in the model. Source: (Keller, Colloca, and 

Béliveau 2002) 

However, it has been noted that most values 

reported in the literature for stiffness and 

damping parameters are rather discrepant, as 

their corresponding testing experiments and 

their respective settings have not been the 

same for each investigated parameter. 

Therefore, the best set of parameters that 

complies best with results from literature on 

the internal motion of the body needs to be 

investigated. This effort will validate the 

model against available experimental results 

and makes sure that the motion the model 

will predict will be reasonable. 

3 RESULTS AND DISCUSSION 

The model was simulated with an initial 

velocity excitation of 1.8414 m/s at the 

location of the L3 vertebra in the normal 

direction, which is the excitation employed 

in Keller et al.’s simulation study for lumbar 

spinal loads (Keller, Colloca, and Béliveau 

2002). Fig. 10 through Fig.12 depict the 

displacements for the L3-L4 motion segment 

in response to said excitation. 

 

Figure 10. L3/L4 segment’s axial compression 

 

Figure 11. L3/L4 segment’s shear displacement 

 

Figure 12. L3/L4 segment’s rotary displacement 

The given displacement profiles have peak-

to-peak values of 0.7mm, 3.5mm, and 1.8 

degrees; which correspond closely to the 

predicted values by (Keller, Colloca, and 

Béliveau 2002). This serves as a preliminary 

validation for the passenger model and 

suggests that its predicted results are 

reasonable.  

4 FUTURE WORK 

To ensure the model’s accuracy in 

predicting the internal motions of the body, 

it needs to be further validated both 

statically and dynamically. Static validation 

will be against (Wilke et al. 1999), which is 

a unique in-vivo experiment that reports the 

intradiscal pressure of the fluid within the 

L4/L5 disc, which is proportional to the 

axial compressive force in that disc, for 

various activities and postures. Furthermore, 

the model will be dynamically validated 

against simulation models that predict 

natural frequencies, damping ratios, and 

transient responses for the sagittal spine 
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such as (Zirbel et al. 2013; Wang et al. 

2010). 

5 CONCLUSION 

There is yet a demand for a quantitative, 

universal ride comfort metric. This paper 

approaches this problem from a 

biomechanical perspective by hypothesizing 

that the ideal ride is that which induces the 

least internal motion within a passenger’s 

body. For this purpose, a biomechanical 

model of the sagittal spine is developed with 

axial, shear, and rotary degrees of freedom. 

The model incorporates a novel geometry 

which enables accounting for the spinal 

curvature and its curved motion. The model 

is validated against available literature for 

reasonable range of motion. Future studies 

could implement the model in their 

investigation to come up with ride-comfort-

enhancing suspension or seat designs for 

autonomous vehicles. 
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