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ABSTRACT 

Cable-driven parallel robots (CDPRs) are well known for the applications requiring large workspaces. The 

mass and elasticity of the cable have a significant effect on the dynamics of large-scale CDPRs. However, 

most of the work in literature assume the cable to be massless and inelastic for the dynamic modeling. 

Therefore, this paper proposes a comprehensive dynamic model of the cable-driven parallel robot which 

takes the cable mass, elasticity, flexural stiffness, flexural damping and cable-pulley interaction into 

consideration. The modeling is done by considering the cable as a series of spring-mass-damper systems 

connected by the revolute joints. Furthermore, the interaction of the cable with the pulley is modeled. The 

bond graph approach is utilized for modeling and the obtained simulation results are discussed. The model 

is validated by comparing its results with the catenary cable model of the CDPR. 

Keywords: cable-driven parallel robots, cable mass and elasticity, discretized catenary model, bond graph. 

1 INTRODUCTION 

Cable-driven parallel robot (CDPR) belongs to the 

class of parallel robots where the rigid links are 

replaced by flexible cables. This modification 

provides certain advantages such as small inertia, 

high payload to weight ratio and large workspace. 

Owing to these advantages, the CDPRs have been 

used in many applications such as large-scale 

telescopes (Li and Pan 2016), stadium video 

camera systems (Cone 1985), large-scale motion-

simulators (Miermeister et al. 2016), to name a 

few.  

On the other hand, the cables encounter certain 

challenges in kinematics, statics, and dynamics of 

CDPRs because of their flexibility. Modeling of 

the cables becomes very challenging when one 

considers cable mass, elasticity, flexural stiffness 

as well as damping into account. This is generally 

required for large-scale robots where the mass and 

elasticity of the cable is non-negligible and can 

significantly affect the statics (Chawla et al. 

2021a) as well as dynamic response (Yuan, 

Courteille, and Deblaise 2015) of the CDPR.  

Most of the work in the literature assume the 

cables to be ideal (i.e., massless and inelastic 

cable) while modeling the CDPRs (Khosravi and 

Taghirad 2014b; Shang et al. 2019). This 

assumption makes the modeling approach quite 

simple and easy to use. Since cables can only pull 

and not push, this modeling approach assumes the 

cable to be taunt by putting unilateral tension 

constraints in the controller design. In practice, the 

ideal cable model is only suitable for small-scale 

CDPRs (with cables of negligible mass) operating 

at small speeds and accelerations.  

From the last decade, the elastic cable model has 

become a popular choice among researchers for 

dynamic analysis and controller design of CDPR. 

This model assumes the cables to be massless 

elastic springs to account for the vibrations 

induced due to elasticity in the cable (Diao and Ma 
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2009; Khosravi and Taghirad 2014a). This model 

is well suited for small-scale CDPRs with taunt 

cables. However, for large scale CDPRs, the mass 

of the cable can significantly affect the dynamics 

of the CDPRs. In addition, the transversal 

vibrations in this case would be significant which 

are ignored in elastic cable model. 

To account for the cable mass, the catenary cable 

model (cable with mass and elasticity) (Irvine 

1981; Kozak, Zhou, and Wang 2006) has been 

used for dynamic analysis of large-scale CDPRs 

(Zi et al. 2008). In addition, this model has been 

extensively used for the kineto-static analysis in 

the literature (Chawla et al. 2021b). However, the 

model assumes that the motion of the robot is 

quasi-static. This assumption can be considered 

valid for some of the applications of large-scale 

CDPRs (such as 3D printing (Chawla et al. 2021c) 

and telescope) but not all. On the other hand, the 

model ignores flexural stiffness which is non-

negligible for thick cables. 

A very limited volume of work in the literature 

focuses on the comprehensive dynamic model of 

CDPR. They are either based on finite element 

method (Du et al. 2012; Cui et al. 2015) or lumped 

mass approach (Collard, Lamaury, and 

Gouttefarde 2011; Caverly, Member, and Forbes 

2014; Mamidi and Bandyopadhyay 2021). Most of 

these models do not consider all the phenomena’s 

(such as cable mass, elasticity, flexural stiffness, 

flexural damping and pulley) altogether. Another 

major challenge is to model the change in cable 

length which is generally required to simulate the 

motion of CDPR. This challenge is addressed 

either by using finite element of variable length 

(Cui et al. 2015) or by increasing/reducing the 

number of elements/segments of the cable 

(Collard, Lamaury, and Gouttefarde 2011). Both 

approaches are computationally intense and are 

difficult to incorporate in simulation due to time-

varying initial conditions for each element. 

In this work, we propose a comprehensive 

dynamic model of CDPR by considering the effect 

of cable mass, elasticity, flexural stiffness, and 

flexural damping altogether. In addition, we also 

present a dynamic model for cable-pulley 

interaction which can be used to analyze the 

change in cable lengths without changing the 

number of segments or changing segment length. 

A bond graph approach is used to model and 

simulate the whole system. A planar CDPR with 2 

cables is considered for simulation. The obtained 

results are validated with the kineto-static analysis 

of catenary cable model. 

This paper is organized as follows: In Section 2, 

the dynamic modeling of cable, cable-pulley 

interaction and the whole CDPR is presented. The 

results and discussions for a planar CDPR is 

discussed in Section 3. Finally, in Section 4, the 

conclusions are drawn.  

2 DYNAMIC MODELING OF A CABLE-

DRIVEN PARALLEL ROBOT 

2.1 Dynamic Modeling of a Cable 

In this work, the cable is modeled as a series of 

spring-mass-damper systems connected by a 

revolute joint, as shown in Figure 1. Each revolute 

joint can have a stiffness and damping coefficient 

to account for the stiffness and damping 

characteristics of the cable due to bending. For 

illustration, consider a cable of radius 

𝑟, unstrained length 𝑙0, unstrained cross-sectional 

area 𝐴0 , unstrained linear density 𝜌0 , normal 

damping material constant 𝑑𝑛 and elastic modulus 

𝐸. The total mass 𝑚 of the cable can be obtained 

as 𝑚 = 𝜌0𝑙0.  

For the purpose of dynamic modeling, the cable is 

discretized into 𝑛 spring-mass-damper system of 

equal lengths. The length 𝑙0𝑖
=

𝑙0

𝑛
 represents the 

unstrained length of 𝑖𝑡ℎ  spring-mass-damper 

system with spring stiffness 𝑘𝑖  and viscous 

damping coefficient 𝑐𝑖. Each spring-mass-damper 

system is connected to the corresponding spring-

mass-damper system by a revolute joint with a 

joint angle of 𝜃𝑖  with respect to 𝑥  axis and 

considered positive in a clockwise direction. The 

parameters 𝑘𝜃𝑖  and 𝑐𝜃𝑖  represents the stiffness 

and viscous damping coefficients of 𝑖𝑡ℎ  revolute 

joint. One end of the cable is hinged to the origin 

of the coordinate frame while the other end is free. 

The gravitational acceleration is acting in the 

negative 𝑧 axis of the coordinate frame.  The cable 

is assumed to lie in a vertical plane; therefore, the 

proposed model is planar in nature. However, on 

replacing revolute joints with u-joints, the model 

can be easily modified to be a spatial model.



 

 

 

Figure 1: Schematic diagram of a cable 

The coefficient of stiffness and damping can be 

represented via beam-equivalence theory 

(Wittbrodt, Edmund, Adamiec-Wójcik, and 

Wojciech 2007) as: 

𝑘𝑖 =
𝐸𝐴0

𝑙0𝑖

, 𝑐𝑖 =
𝑑𝑛𝐴0

𝑙0𝑖

, 𝑘𝜃𝑖
=

𝐸𝐽

𝑙0𝑖

 , 𝑐𝜃𝑖
=

𝑑𝑛𝐽

𝑙0𝑖

, 

where 𝐽 =
𝜋𝑟4

4
 represents the second moment of 

area.  

Let 𝑥𝑖 and 𝑧𝑖 represents the position of mass 𝑚𝑖 of 

the spring-mass-damper system representing the 

cable. The position of mass 𝑚𝑖  must satisfy the 

following kinematic relation: 

𝑥𝑖 = 𝑥𝑖−1 + 𝑙𝑖 cos 𝜃𝑖, (1) 

𝑧𝑖 = 𝑧𝑖−1 − 𝑙𝑖 sin 𝜃𝑖, (2) 

where 𝑥𝑖−1  and 𝑧𝑖−1  represents the position of 

mass 𝑚𝑖−1 and 𝑙𝑖 represents the strained length of 

the 𝑖𝑡ℎ  element which is the summation of 

unstrained length 𝑙0𝑖
 and elastic elongation Δ𝑙𝑖 . 

The differentiation of (1) and (2) with respect to 

time 𝑡 yields: 

𝑥̇𝑖 = 𝑥̇𝑖−1 + 𝑙𝑖̇ cos 𝜃𝑖 − 𝑙𝑖 sin 𝜃𝑖 𝜃̇𝑖, (3) 

𝑧̇𝑖 = 𝑧̇𝑖−1 − 𝑙𝑖̇ sin 𝜃𝑖 − 𝑙𝑖 cos 𝜃𝑖𝜃̇𝑖. (4) 

Rearranging (3) and (4) gives: 

𝑙𝑖 sin 𝜃𝑖 𝜃̇𝑖 = 𝑥̇𝑖−1 −  𝑥̇𝑖  + 𝑙𝑖̇ cos 𝜃𝑖, (5) 

𝑙𝑖 cos 𝜃𝑖𝜃̇𝑖 = 𝑧̇𝑖−1 − 𝑧̇𝑖 − 𝑙𝑖̇ sin 𝜃𝑖. (6) 

Multiplying (5) by sin 𝜃𝑖  and (6) by cos 𝜃𝑖  and 

adding yields:  

𝑙𝑖𝜃̇𝑖 = (𝑥̇𝑖−1 − 𝑥̇𝑖) sin 𝜃𝑖  + (𝑧̇𝑖−1 − 𝑧̇𝑖) cos 𝜃𝑖 . (7) 

Substituting cos 𝜃𝑖  and sin 𝜃𝑖  form (1) and (2), 

respectively in (7) gives:



 

 

 

Figure 2: Bond graph model of a cable 

𝑙𝑖𝜃̇𝑖 = (𝑥̇𝑖−1 − 𝑥̇𝑖)
(𝑧𝑖−1−𝑧𝑖)

𝑙𝑖
+ (𝑧̇𝑖−1 − 𝑧̇𝑖)

(𝑥𝑖−𝑥𝑖−1)

𝑙𝑖
. (8) 

 Rewriting (8) provides: 

𝜃̇𝑖 =
(𝑧𝑖−𝑧𝑖−1) 

𝑙𝑖
2 (𝑥̇𝑖 − 𝑥̇𝑖−1) −

(𝑥𝑖−𝑥𝑖−1)

𝑙𝑖
2 (𝑧̇𝑖 − 𝑧̇𝑖−1).  (9) 

Equation (9) gives the kinematic relation for 𝜃̇𝑖. In 

a similar way, the kinematic relation for 𝑙𝑖̇ can be 

derived using the following kinematic relation for 

strained length 𝑙𝑖: 

𝑙𝑖 = √(𝑥𝑖 − 𝑥𝑖−1)2 + (𝑧𝑖 − 𝑧𝑖−1)2. (10) 

Squaring both sides yield: 

𝑙𝑖
2 = (𝑥𝑖 − 𝑥𝑖−1)2 + (𝑧𝑖 − 𝑧𝑖−1)2. (11) 

 Differentiating (11) with respect to time 𝑡 gives: 

2 𝑙𝑖𝑙𝑖̇ = 2(𝑥𝑖 − 𝑥𝑖−1)(𝑥̇𝑖 − 𝑥̇𝑖−1)
+ 2(𝑧𝑖 − 𝑧𝑖−1)(𝑧̇𝑖 − 𝑧̇𝑖−1), 

(12) 

𝑙𝑖̇ =
(𝑥𝑖−𝑥𝑖−1)

𝑙𝑖
(𝑥̇𝑖 − 𝑥̇𝑖−1) +

(𝑧𝑖−𝑧𝑖−1)

𝑙𝑖
(𝑧̇𝑖 − 𝑧̇𝑖−1). (13) 

Therefore, using the kinematic relation for 𝜃̇𝑖 and 

𝑙𝑖̇ , the bond graph of the system is prepared, as 

shown in Figure 2. The transformer moduli 

applied in the bond graph are given in Table 1. 

Table 1: Transformer Moduli for Bond Graph 

Modeling 

𝜇1 =
−(𝑥𝑖 − 𝑥𝑖−1)

𝑙𝑖
 𝜇2 =

−(𝑧𝑖 − 𝑧𝑖−1)

𝑙𝑖
 

𝜇3 =
−(𝑧𝑖 − 𝑧𝑖−1) 

𝑙𝑖
2  𝜇4 =

(𝑥𝑖 − 𝑥𝑖−1)

𝑙𝑖
2  

 

The cable is discretized into 𝑛  spring-mass-

damper system attached by a revolute joint. Each 

system (except first and last) is connected to each 

other via three bonds. These three bonds transfer 

the energy from one system to another. The bond 

graph model of 𝑖𝑡ℎ spring-mass-damper system is 

descriptively shown in Figure 2. The 𝑖𝑡ℎ system is 

connected to 𝑖 − 1𝑡ℎ system vie three bonds which 

transfer flow information from 𝑖 − 1𝑡ℎ system to 

𝑖𝑡ℎ system. The 𝑖𝑡ℎ  system is also connected to 
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𝑖 + 1𝑡ℎ  system via bonds to transfer flow 

information to 𝑖 + 1𝑡ℎ system. A source of effort 

is applied on 1𝑧̇𝑖
 representing the gravitational 

force due to mass 𝑚𝑖 , where 𝑔 = −9.8
m

s2 

represents gravitational acceleration. 

Additionally, the inertia element is applied to 1𝑥̇𝑖
 

and 1𝑧̇𝑖
. A stiffness element with 𝑘𝑖  as spring 

stiffness and resistance element with 𝑐𝑖  as 

resistance is connected to 1𝑙𝑖̇
 to account for the 

elastic stiffness and longitudinal damping. The 

effort for the stiffness element is proportional to 

the elastic elongation Δ𝑙𝑖 of 𝑖𝑡ℎ system/element.  

The stiffness element with 𝑘𝜃𝑖
 as rotational 

stiffness and resistive element with 𝑐𝜃𝑖
 as viscous 

damping coefficient is connected to 1𝜃̇𝑖−𝜃̇𝑖−1
to 

account for the bending stiffness and transversal 

damping of the cable, respectively. The effort 

corresponding to bending stiffness element is 

proportional to the difference in the joint angle 

between the previous system joint angle 𝜃𝑖−1 and 

considered system joint angle 𝜃𝑖. In case the other 

end of cable is holding a point mass 𝑀, the inertia 

element and source of effort of 𝑛𝑡ℎ system can be 

updated to include the point mass 𝑀.  

2.2 Dynamic Modeling of a Cable-Pulley 

Interaction 

The pulley is modeled as a spring of high stiffness 

and a damper (as shown in Figure 3) which apply 

a resistive force on the cable only when the cable 

is inside the boundary of the object. This implies 

that the force is exerted on the cable if any of the 

point mass of the spring-mass-damper system is 

inside the boundary or comes in contact with the 

boundary of a pulley. This is checked by 

measuring the distance between the center of a 

pulley (𝑥𝑝, 𝑧𝑝) and the coordinates of the mass 

(𝑥𝑖, 𝑧𝑖)  (i.e., 𝑑𝑝𝑖
= √(𝑥𝑝 − 𝑥𝑖)

2
+ (𝑧𝑝 − 𝑧𝑖)

2
) and 

applying a condition when the distance is less than 

the radius of a pulley 𝑟𝑝. In bond graph, the cable-

pulley interaction is modeled by inserting a 

modulated source of effort (MSE) on 1𝑥̇𝑖
 and 

1𝑧̇𝑖
 junction of 𝑖𝑡ℎ  system for 𝑖 = 1,2, … , 𝑛  in 

Figure 2. The effort for MSE corresponding to 1𝑥̇𝑖
 

and 1𝑧̇𝑖
, respectively is given by (14) and (15). The 

parameters 𝑘𝑝  and 𝑐𝑝  represent the spring 

stiffness and damping coefficient of pulley, 

respectively. 

 

Figure 3: Schematic diagram of a pulley 

𝑒𝑥̇𝑖
= {

𝑘𝑝(𝑥𝑝 − 𝑥𝑖) − 𝑐𝑝𝑥̇𝑖  ; if 𝑑𝑝𝑖
≤ 𝑟𝑝

        0                                 ; otherwise
 (14) 

𝑒𝑧̇𝑖
= {

𝑘𝑝(𝑧𝑝 − 𝑧𝑖) − 𝑐𝑝𝑧̇𝑖  ; if 𝑑𝑝𝑖
≤ 𝑟𝑝

        0                                ; otherwise 
 (15) 

2.3 Dynamic Modeling of a Cable-Driven 

Parallel Robot 

Figure 4 shows the schematic diagram of a general 

cable driven parallel robot. It consists of the cables 

connected in parallel to the mobile platform at one 

end and to the winches (via pulleys) at the other 

end. The motion of the mobile platform is 

controlled by changing the length of the cables 

with the application of winches.  For the dynamic 

analysis of this system, it is important to model the 

cables as well as pulleys which is discussed 

comprehensively in the previous subsections. 

 

Figure 4: Schematic diagram of CDPR 



 

 

 

Figure 5: Bond graph model of a CDPR 

Let {O} represents the global coordinate frame 

and {P} denotes the local coordinate frame 

attached to the center of mass of the mobile 

platform. The vector 𝐫 = [𝑥𝑏 𝑧𝑏]𝑇  represents the 

position of the local coordinate frame {P} in the 

global coordinate frame {O}. The position vector 

𝐛𝑖  symbolizes the position of 𝑖𝑡ℎ  cable anchor 

point with respect to the local frame {P}. The 

rotation matrix 𝐑 characterizes the orientation of 

the mobile platform. The cable anchor point 

corresponding to global frame {O} can be given 

by: 

𝐩𝒊 = 𝐫 + 𝐑𝐛𝒊 (16) 

where the rotation matrix 𝐑 for the rotation of 

mobile platform by angle 𝜃  along y-axis can be 

represented as: 

𝐑 = [
cos 𝜃 −sin 𝜃
sin 𝜃 cos 𝜃

] (17) 

The velocity of the cable anchor point can be 

obtained by differentiating (16) with respect to 

time t as: 

𝐩̇𝒊 = 𝐫̇ +
𝑑𝐑

𝑑𝜃
𝜃̇ 𝐛𝒊 (18) 

Equation (18) can be used to develop the bond 

graph model of the mobile platform, as shown in 

Figure 5. The junction 1𝑥̇𝑏
 and 1𝑧̇𝑏

 represents the 

velocity of the center of mass of the mobile 

platform in 𝑥 and 𝑧 direction, respectively. For a 

cable-driven parallel robot, where 𝑛𝑐  number of 

cables are connected in parallel to a single mobile 

platform, the output of last spring-mass-damper 

system for all the cables should be connected to 

the bond graph model of a mobile-platform. This 

means that the junction 1𝑥̇𝑛𝑖
 and 1𝑧̇𝑛𝑖

 should be 

connected to mobile platform where 𝑖 =
1,2, … , 𝑛𝑐 . The parameter M and 𝐽𝑀𝑃 represents 

the mass and moment of inertia of the mobile 

platform. The dynamic equations for the bond 

graph can be obtained using 20-Sim software. 

After obtaining the dynamic equation, the 

dynamics of CDPR can be simulated by defining 

the initial conditions and parameters of the robot. 

3 RESULTS AND DISCUSSION 

In this section, the simulation results for the 

proposed dynamic model of CDPR are presented. 

A stainless-steel cable 18 × 7 of 10 mm diameter 

is used for the simulation. This cable has been used 

in CoGiRo robot and the parameters of the CDPR 

are given in Table 2. The parameters of the cable 
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are adopted from (Merlet 2016) except the 

parameter 4 which is taken from (Baklouti et al. 

2017). 

A suspended CDPR with 2 cables is considered for 

simulation in this paper. The pulley corresponding 

to cable 1 is fixed at [𝑥𝑝1
, 𝑧𝑝1

] = [−1.75, 0] m 

corresponding to global reference frame. The 

pulley for cable 2 is fixed at [𝑥𝑝2
, 𝑧𝑝2

] =

[1.75, 0] m .  A rectangular mobile platform of 

length 𝑙𝑝 = 0.3 m  and height ℎ𝑝 = 0.2 m  is 

considered. The center of mass of the mobile 

platform is considered at the geometrical center of 

the rectangular platform. The cable anchor point 

corresponding to frame {P} are given by 𝑏1 =

[−
𝑙𝑝

2
,

ℎ𝑝

2
]

𝑇

and 𝑏2 = [
𝑙𝑝

2
,

ℎ𝑝

2
]

𝑇

. At initial position, 

the mobile platform is at 𝐫 = [0, −2] m and zero 

orientation (i.e., 𝜃 = 0°). The initial configuration 

of both the cables is obtained using the inverse 

kinematics for ideal cables, as shown in Figure 6 

(a). For simulation, the free end of both the cables 

is pulled downward to achieve a circular motion of 

the mobile platform. Therefore, the reference 

position 𝐫𝒓𝒆𝒇 of the mobile platform is given by: 

𝐫𝒓𝒆𝒇 = [
0.4 sin 1.5𝑡

−1.6 − 0.4 cos 1.5𝑡
] (19) 

The orientation of the reference trajectory in 

considered to be zero. The velocity of the cables at 

the free end with respect to the reference velocity 

of the mobile platform is obtained by using inverse 

kinematics for ideal cables (Lenaričič and Husty 

2012). This velocity is applied as a source of flow 

in negative 𝑧 -axis to the first element of each 

cable. The animation of the CDPR at different time 

instants is shown in Figure 6. The readers may 

refer https://youtu.be/3ahQHTX8ahI to watch the 

animation of the results shown in Figure  6.

 

Table 2: Parameters of CDPR 

Symbol Description Value 

𝑟 Radius of the cable 5 mm 

𝑙0 Unstrained length of the cable 3.75 m 

𝜌0 Linear density of the cable 0.35 kg/m 

𝑑𝑛 Normal damping material constant 109 Ns/m2 

𝐸 Modulus of elasticity 109 N/m2 

𝑛 Number of elements 15 

𝑘𝑖 Stiffness of 𝑖𝑡ℎ element 3.14 × 105 N/m 

𝑐𝑖 Viscous damping coefficient of 𝑖𝑡ℎ element 3.14 × 105 Ns/m 

𝑘𝜃𝑖
 Stiffness of 𝑖𝑡ℎ revolute joint 1.96 Nm/rad 

𝑐𝜃𝑖
 Viscous damping coefficient of 𝑖𝑡ℎ revolute joint 1.96 Nms/rad 

𝑘𝑝 Stiffness of pulley 107 N/m 

𝑐𝑝 Viscous damping coefficient for cable-pulley interaction 10 Ns/m 

𝑟𝑝 Radius of pulley 0.25 m 

𝑀 Mass of the mobile platform 2.5 kg 

𝐽𝑀𝑃 Moment of inertia of the mobile platform 0.0271 kg m2 

https://youtu.be/3ahQHTX8ahI


 

 

 

   

Figure 6: Simulation of CDPR at different time instants 

   

(a) Contour Plot (b) Platform Orientation (c) Position Error 

Figure 7: Simulation response for the motion of the mobile platform 

The results show that the mobile platform is 

gradually moving along a circular trajectory with 

the increase in time.  The sagging of the cables can 

be clearly seen in Figure 6 (b) and 6 (c). The results 

can be closely visualized by Figure 7 (a) which 

shows the trajectory taken by the mobile platform 

in comparison to the desired trajectory. On the 

other hand, Figure 7 (b) shows the orientation of 

the mobile platform while following the trajectory. 

The position error of the actual trajectory with 

respect to the reference trajectory can be seen in 

Figure 7 (c). A maximum position error of 8.5 cm 

and 11 cm is observed in 𝑥  and 𝑧  direction, 

respectively. On the other hand, a maximum error 

of 15 °  is observed in the orientation of the 

platform. A negative error in the 𝑧  direction is 

observed throughout the trajectory. This is because 

of the large sagging in the cables. In general, the 

error is because of the mass and elastic elongation 

of the cable which are ignored while obtaining the 

inverse kinematics using ideal cable model. The 

presented error also shows that if a joint-space 

controller is designed based on the inverse 

kinematics of ideal cable model, the proposed 

system will encounter at least 11 cm error. This 

shows the importance of the proposed dynamic 

model in simulating the accuracy of the CDPR. 

The catenary cable model (Kozak, Zhou, and 

Wang 2006) of the CDPR which is observed to be 

in good agreement with the experimental results is 

utilized for the validation of the proposed model. 

This catenary model considers the cable mass and 

elasticity but ignores the flexural stiffness for the 

analysis (Kozak, Zhou, and Wang 2006). At the 

initial configuration, the cable 1 and cable 2 are 

straight and are making an angle of 45° and 135°, 

respectively with respect to x-axis. In this case, the 

mobile platform of small point mass (𝑀 = 1 kg) is 

considered to compare the results at large sagging. 

The proposed model is simulated until a static state 

is reached. The static state of the CDPR using the 
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proposed model is shown in Figure 8. Similarly, 

the cable profiles are obtained by doing the inverse 

kineto-static analysis for the catenary cable model, 

as shown by dotted red color in Figure 8. The cable 

profiles for the proposed model are observed to be 

in close proximity with the catenary cable model. 

A minor difference of 0.8 mm is observed in the 

cable lengths of both models. In addition, a 

relatively small bending in the cable is observed in 

the proposed model as compared to catenary cable 

model due to the ignored flexural stiffness in the 

catenary cable model.  

 

Figure 8: Comparison of the proposed model 

with the catenary cable model 

4 CONCLUSION 

In this paper, a comprehensive dynamic model of 

the cable-driven parallel robot is proposed. This 

model considers the cable mass, elasticity, flexural 

stiffness, and flexural damping for the dynamic 

modeling of the CDPR. The proposed dynamic 

model considers the cable to be a series of spring-

mass-damper systems connected by the revolute 

joints. In addition, the dynamic model for the in-

teraction of the cable with the pulley is also pre-

sented. The bond graph approach is utilized for 

modeling and simulation of the proposed model. A 

suspended CDPR with 2 cables is considered for 

simulation.  The velocity of the cables with respect 

to the reference velocity of the mobile platform is 

obtained by using inverse kinematics for the ideal 

cable model. The results show a significant error 

in the actual trajectory of the mobile platform 

which marks the importance of the proposed dy-

namic model in simulating the accuracy of the 

CDPR. The validation of the proposed model is 

provided by comparing its results with the cate-

nary cable model. The obtained results are encour-

aging and motivates us to extend the model to spa-

tial configurations that can be utilized for the 

dynamic analysis of complex CDPRs in the future. 
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