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ABSTRACT 

For continuous systems, lumped segment models may be easer to generate than modal expansion models, 
especially when for varying cross-section geometry or material properties.  However, there is no analytical 

correspondence between segment damping coefficients and modal damping ratios.  Lumped segment 

modeling of a system with experimentally-determined damping ratios presents a resistive element tuning 

challenge.  This paper treats R-element tuning as an optimization problem.  Design variables include the 
coefficients of the familiar R-elements that are in parallel with bending, torsional, or axial compliance 

elements; along with additional R-elements that act on the absolute flow of the segment inertias.  At each 

optimization step, damping ratios are determined from the current state variable coefficient matrix, which 
is a function of the resistances.  For axially-vibrating rod and beam bending case studies, the first four 

desired modal damping ratios were achieved using the lumped segment R-element values from a fast-

converging sequential quadratic programming optimization run. 
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1 INTRODUCTION 

For modeling continuous systems such as rods, 

beams, or shafts, both the lumped-segment or 

modal-expansion methods readily lend themselves 
to bond graph implementation.  While the modal 

expansion method can be more computationally 

efficient, as only N modes are required to capture 
the first N natural frequencies; the determination 

of mode shapes and natural frequencies can be 

analytically intractable.  For the author’s research 

on non-destructive evaluation of wooden 
structures using modal impact testing, models of 

tapered in-ground poles are required.  Damping 

ratios from these models must match 
experimentally-measured values.  While the 

lumped-segment method allows for 

straightforward inclusion of the varying cross 
section and compliant boundary conditions, the 

replication of modal damping ratios presents an R-

element tuning challenge (Rideout and Whelan 

2014).  There is no analytical relation between 

modal damping ratios and the resistances of the 
typical R-elements that are placed in parallel with 

axial, torsional, shear, or bending compliances to 

account for material damping.  The difficulty of 
modeling damping from first principles is 

acknowledged in (Karnopp, Margolis and 

Rosenberg 2012), wherein the tuning of damping 
ratios in modal expansion models is 

straightforward and gives accurate results.  The 

tuning of lumped segment damping to achieve 

comparable modal damping ratios remains 
unresolved.  A sample of the literature suggests 

that the typical approach to modeling damped 

beams is to add damping terms to the partial 
differential equation and solve using approximate 

or energy methods (Mahapatra and Panigrahi 

2019), (Akinpelu 2012), as opposed to adding and 

tuning damping in a lumped segment model. 

 In this paper, lumped segment damping values are 
tuned through an optimization problem in which 

the symbolic coefficient matrix (“A” matrix) is 

generated, containing variables for the typical R 
elements in parallel with compliances, and 

additional “absolute” R elements that act directly 

on the inertial velocities.  The damping ratios are 
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extracted from the A matrix eigenvalues at each 

optimization step and compared to the desired 

values, after which another optimization step is 
executed until convergence.  Section 2 considers 

an axially vibrating rod for which the A matrix is 

generated by hand, and is scalable to an arbitrary 
number of segments.  The segment bond graph 

submodel is reviewed, the Matlab generation of 

the n-dimensional A matrix and subsequent 
optimization problem are presented, and the 

dampers are tuned for multiple sets of desired 

modal damping ratio values.  Section 3 applies the 

method to a more complex beam bending 
example, where the symbolic A matrix is 

generated using the Frequency Domain Toolbox 

of the 20sim® bond graph simulation 
environment.  Section 4 discusses the results, and 

Section 5 provides a summary and description of 

future work.  

2 DAMPER TUNING METHOD APPLIED 

TO AXIALLY VIBRATING ROD 

2.1 Axial Vibration Model 

The axially-vibrating rod is represented by a 
conceptually simple lumped segment model, with 

system schematic and segment submodel shown in 

Figure 1. 

 

 

Figure 1: Axial vibration schematic and segment 

bond graph. 

While the “absolute” dampers are more difficult to 

associate with physical phenomena that 

significantly affect the response, they will be 
shown to be useful for tuning modal damping 

ratios. 

2.2 Simulation and Optimization 

Based on a free body diagram of an individual 

segment, the 2n x 2n state coefficient matrix A for 

an n-segment representation can be expressed 
symbolically as in Table 1, assuming a state vector 

of the form 𝑥̇⃗ = [𝑥1 𝑣1 𝑥2 𝑣2 . . . ]  where 

𝑥𝑖̇ = 𝑣𝑖. 

Table 1: Symbolic A matrix entries. 

Element(s) Symbolic Expression 

Row 2i - 1 Element 2i-1 = 1,  

all others 0 

Row 2i, element 2i 
−

𝑅𝑝𝑖 + 𝑅𝑝(𝑖+1) + 𝑅𝑎𝑖

𝑚𝑖

 

Row 2i, element 2i-1 
−

𝑘𝑖 + 𝑘(𝑖+1)

𝑚𝑖

 

Row 2i, element 2i+1 𝑘(𝑖+1)

𝑚𝑖

 

Row 2i, element 2i+2 𝑅𝑝(𝑖+1)

𝑚𝑖

 

Row 2i, element 2i-2 𝑅𝑝(𝑖+1)

𝑚𝑖

 

Row 2i, element 2i-3 𝑘𝑖

𝑚𝑖

 

 

The expressions in Table 1 were coded into a 

Matlab® m-file, using symbolic variables for 

mass, stiffness, and damping coefficients.  
Because the A matrix variable remains symbolic 

even after substituting constant parameter values 

for mass and stiffness, the A matrix was copied and 

pasted into a function m-file as a double-precision 
variable.  The “Rp_” and “Ra_” variable names 

appear in the A matrix, and must be defined in the 

preceding code as the elements of the function 
argument vector.  At each optimization step, the 

current values of the damping coefficients are 

passed to this function and substituted into the A 

matrix.  Eigenvalues are calculated and sorted by 
increasing mode number, and then damping ratios 

…
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Zi, are computed and compared to the desired 

(reference) damping ratios Zir according to a 

weighted cost function.  Figure 2 shows excerpts 
of the Matlab code, and Equation (1) is the cost 

function. 

𝐽 = ∑ 𝑎𝑖𝑖 (𝑍𝑖 − 𝑍𝑖𝑟)2    (1) 

 

Figure 2: Damping ratio calculation in Matlab® 

2.3 Results  

Figures 3-6 depict the first four mode shapes of the 

bar, while also plotting parallel damping values vs. 

axial coordinate (orange long-dash line), and 
absolute damping values vs. axial coordinate (blue 

solid line).  The absolute damping values are 

scaled so that the variation along the bar length is 

clear.  The plot titles show the desired and tuned 
damping ratios in percent.  Bar properties, based 

on a fictitious material that exaggerates 

displacements without impacting the generality of 
the method, are:  Young’s modulus 100 x 103 Pa, 

density 7860 kg/m3, cross-sectional area 0.01 m2, 

length 1 m. 

From the figure titles it is apparent that the desired 
damping ratios can be achieved with reasonable 

accuracy, given that there is a five-fold increase of 

one of the ratios.  The coefficients of the absolute 

dampers, which act directly on the velocity of each 
mass, are typically 1-2 orders of magnitude lower 

than those for the parallel dampers, for a given 

amount of overall damping.  The parallel dampers 

act on the relative velocity of adjacent segments, 

which is much smaller than the absolute velocity.   

Figure 3: Zir = [5%, 1%, 1% 1%] 

 

Figure 4: Zir = [1%, 5%, 1% 1%] 

Figure 5: Zir = [1%, 1%, 5% 1%] 
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Figure 6: Zir = [1%, 1%, 1% 5%] 

Figure 7 shows the response of the bar with only 

absolute dampers (Ra = 1 Ns/m), and then with 

only parallel dampers (Rp = 150 Ns/m), with each 

model giving the same first damping ratio.  Table 
2 shows the associated natural frequencies and 

damping ratios.  For parallel dampers, damping 

ratios increase monotonically, while for absolute 
dampers they decrease.  The response at the peaks 

in Figure 7 therefore shows more persistent high-

frequency content for the case of absolute damping 
only.  A combination of absolute and parallel 

damping is required for arbitrary ratio tuning. 

Table 2: Damping ratios, equal R values. 

 Absolute 

Dampers Only 

(Ra = 1 Ns/m) 

Parallel 

Dampers Only 

(Rp = 150 Ns/m) 

Nat’l Freq 

(rad/s) 

Damping Ratio 

(%) 

Damping Ratio 

(%) 

5.45 2.1 2.3 

16.31 0.70 6.8 

27.05 0.42 11.3 

37.6 0.30 15.7 

 

The locations of the elevated damping coefficients 

with respect to the modal nodes and antinodes is 

addressed in the Discussion section. 

 

 

 

 

 

Figure 7 – Time response comparison. 

3 EXTENSION TO BEAM BENDING 

WITH COMPUTER-GENERATED A 

MATRIX 

3.1 Methodology 

The optimization method is now applied to the 

more complex beam bending model.  A 20-seg-

ment Euler-Bernoulli beam model was constructed 
with absolute dampers acting on the lateral trans-

lational segment velocity, and parallel dampers 

acting on the rotational (bending) relative velocity 
of adjacent segments.  The schematic and segment 

bond graph are shown in Figure 8.   

 

 
 

 

 
 

 

 

Figure 8: Euler-Bernoulli beam schematic and 

segment bond graph 
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The increase in complexity compared to the axi-

ally-vibrating rod necessitated the use of the 

20sim® Frequency Domain Toolbox to generate a 
symbolic A matrix.  As shown in the Figure 9 

screen shot, the symbolic A matrix is cumbersome, 

but can be exported to Matlab® as an m-file script.    
The constant parameters (e.g., length L, Young’s 

Modulus E) were substituted, the variable names 

simplified, and the matrix pasted into a function 
m-file as in the Section 2 example.  As a test, the 

function was used to predict the system eigenval-

ues, which matched the 20sim® eigenvalues from 

a numeric linearization based on the time response 
to an impulse force as shown in Figure 10.  In this 

numerical test case, all absolute and parallel 

damper values were set to 1.0.  Beam properties:  
Young’s modulus 8.47 GPa, density 320 kg/m3, 

cross section 0.0889 m x 0.0889 m, length 1.0668 

m. 

 

 
Figure 9: Portion of symbolic A matrix from 20sim® 

Upon reinstating the damper coefficients as opti-

mization design variables, the tuning problem was 

solved as in Section 2.  The method worked with-

out issues for the even more complex problem of 
the Timoshenko beam with rotary damping and 

translational shear (resulting in an 80 x 80 A ma-

trix); however, only the Euler-Bernoulli results are 
shown in this paper. 

3.2 Results 

Table 3 shows the weighting factors, target, and 

actual damping ratios for the Euler-Bernoulli 
beam, using the same four sets of desired values as 

in the axial case study.  Default settings were used 

for Matlab®’s fmincon optimization command ex-

cept that maximum iterations were increased to 

5000 from 3000.  Despite increasing the weighting 
factor of the mode 2 damping ratio in the second 

scenario of Table 3, the first damping ratio could 

not be suppressed fully.  Interactions among 
damping ratios are complex, and there appear to be  

limits on how greatly successive damping ratios 

can vary relative to each other.  The first mode has 

no node other than the fixed end, and any attempt 
to add damping to mode 2 must affects mode 1.  

This issue is discussed further in Section 4.  



 

 

 
Figure 10: Time response and eigenvalue verification. 

 
Table 3 – Bending beam damping ratio tuning results. 

Desired Damping 

Ratios (%) 

Weighting Factors Final Damping 

Ratios (%) 

Objective Function Final Value 

5, 1, 1, 1 1000, 1000, 1000, 1000 5.0, 1.0, 1.0, 1.0 5.5465e-10, converged within 
tolerances 

1, 5, 1, 1 1000, 10000, 1000, 5000 3.3, 4.8, 1.9, 1.2 0.6638, maximum iterations 
exceeded 

1, 1, 5, 1 1000, 1000, 1000, 1000 1.0, 1.4, 4.9, 1.1 0.0149, maximum iterations 
exceeded 

1, 1, 1, 5 1000, 1000, 1000, 1000 1.0, 1.0, 1.0, 5.0 3.4967e-09, converged within 
tolerances 

Figure 11 shows time response for both a modal 

expansion model and a tuned lumped segment 

model with desired modal damping ratios of [1%, 
1%, 5%, 1%].  The two models show excellent 

agreement, verifying that the tuning results lead to 

the anticipated modal damping ratios in the bond 

graph. 

4 DISCUSSION 

Early investigations with the 18-segment axial rod 

showed that completely arbitrary damping ratios 

could not be realized, given that individual 
damping values for one segment will affect other 

modal damping ratios.  An attempt to achieve three 

widely-varying ratios Zir = [12%, 2%, 12%] 

resulted in a best result of [12.9% 2.4% 8.6%] 

based on trial and error initial conditions and 
weighting factors.  There are limits to how much 

the second mode damping can be suppressed for 

the bar, if the third mode must then be raised to a 

significantly higher value.  Section 3 showed that 
raising mode 2 damping without raising that of 

mode 1 was not achievable for the beam.



 

 

 

Figure 11: Time response of lumped segment and modal expansion beams with Zir = [1%, 1%, 5% 1%]. 

 
For the [1.0% 1.0% 1.0% 5.0%] bar tuning prob-

lem, an ad hoc method of raising the damping of 

mode 4 was attempted by putting high damping 
only at the antinodes of mode 4.  This did in-

crease mode 4 damping but also increased damp-

ing of mode 1.  The tuning problem is more com-
plex than simply inserting or removing dampers 

at locations of modal nodes and antinodes.  For 

example, Figure 3 shows elevated parallel damp-

ing at all antinodes of mode 4, and elevated abso-
lute damping at the third antinode of mode 4; yet 

only mode 1 damping ratio is elevated.  Figure 4 

is somewhat more intuitive in that mode 2 damp-
ing ratio must be raised, and as expected, little 

parallel damping is present at the first antinode of 

mode 2.  However, extremely high absolute 
damping is placed at a segment that should con-

tribute significantly to modes 2, 3, and 4.  Figure 

5 shows elevated parallel damping near two of 

the three nodes of mode 3, yet mode 3’s damping 
ratio is elevated (likely via the higher absolute 

damping at the second antinode).  Given that 

there is overlap of nodes and antinodes for vari-
ous modes, the tuning problem is necessarily not 

easily predicted or derived. 

5 SUMMARY AND FUTURE WORK 

For modeling applications where the simplicity of 
a lumped-segment bond graph modeling approach 

is warranted (e.g., varying cross-section), yet 

particular modal damping ratios are required (e.g., 
to match experimental modal testing results), the 

damper tuning problem has been solved using 

optimization.  Both “parallel” dampers (in parallel 
with material compliances) and “absolute” 

dampers (responding to inertia velocities) were 

treated as optimization design variables in a 

Matlab® fmincon sequential quadratic gradient 
search method.  The optimizer calculated damping 

ratios at each step based on a state coefficient 

matrix that was generated by hand for an 18-
segment axially-vibrating rod, and using 

20sim®’s Frequency Domain Toolbox for a 20-

segment Euler-Bernoulli beam in bending. 

Future work could include using a Monte Carlo 

simulation to vary weighting factors and initial 
conditions in search of global optima.  In the beam 

bending case study, damping could also have been 

added to the absolute angular rotation (bending) 1-
junctions.  Nonlinear damping laws could also be 

considered in search of greater capacity to achieve 

damping ratios which vary considerably from one 

mode to the next. 
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