RECENT SIMULATOR DIGITAL CONTROL UPGRADES

L3 MAPPS Inc. | Power Systems and Simulation

15 January 2020

2020 Power Plant Simulation Conference (PowerPlantSim’20)

Bernard Gagnon, Manager, Simulator Technologies & Integration
Outline

• Background Information
• Simulator Implementation Strategies & Selection Factors
• Planning for Simulator DCS Upgrades
• Recent Case Studies
• Conclusions
BACKGROUND

Recent Simulator Digital Control Upgrades
Background Information

• Majority of US NPPs built in the 1970s and 1980s with analog controls
• More European NPPs built with digital controls, but systems are being upgraded for multiple reasons
 − Increased safety, redundancy and/or cyber-security requirements
 − High cost of ownership of current control system
 − Insufficient OEM and/or secondary market support
 − Inability to implement/integrate plant changes with current system
 − etc.
• Number of DCS upgrades and replacements has accelerated in recent years
Recent Simulator Digital Control Upgrades
Simulator Implementation Strategies

There is more than one answer

Stimulation

Emulation / Virtualization

Simulation

[More info in back-up slides]
Simulator Strategy Selection Factors

• Technical Factors
 − Plant Upgrade Strategy (schedule, use of simulator for V&V, etc.)
 − Development/Classroom Simulators (portability of simulation)
 − Availability of Translator and/or Emulator
 − Configuration Management (ease to implement future plant changes)

• Non-Technical Factors
 − Intellectual Property Considerations
 − Licensing (emulator, HMI, stimulated DCS, etc.)
 − If/when/which data available for simulation
 − Who defines and contracts the Simulator Scope of Work
 − Plant Engineering (itself, or included in DCS Vendor contract)
 − Simulator Engineering
 − Cost
PLANNING FOR SIMULATOR DCS UPGRADES

Recent Simulator Digital Control Upgrades
Contractual Approaches

<table>
<thead>
<tr>
<th>Simulator work included in Plant DCS Vendor contract</th>
<th>Simulator work contracted separately by Simulator Team</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCS Vendor typically subcontracts Simulator vendor</td>
<td>Simulator Team typically subcontracts Simulator vendor but may perform some of the work itself</td>
</tr>
<tr>
<td>Intellectual Property rights and data transfers handled by DCS Vendor</td>
<td>Simulator Team needs to manage scheduling, data, Intellectual Property, etc.</td>
</tr>
<tr>
<td>Reduced workload for simulator upgrade</td>
<td></td>
</tr>
<tr>
<td>Plant Engineering will drive Tender evaluation</td>
<td>Increased flexibility of technical solution, including possible addition of non-DCS scope of work</td>
</tr>
<tr>
<td>Simulator requirements need to be well defined from the beginning, more difficult to change later if proposed solution not satisfactory</td>
<td>Good reasons to couple project with simulator platform upgrade [More info in back-up slides]</td>
</tr>
</tbody>
</table>
Simulator DCS Upgrade Requirements

• Specifications to Plant DCS Vendors / Tenderers shall include Simulator requirements
 - If not properly defined in the Plant DCS contract, you may inherit a Simulator Project with
 - Lack of DCS Vendor support, data, licensing, etc.
 - Unreasonable schedule (required data available too late to implement in simulator and meet training requirement)
 - Cost overruns / underestimated budgets
 - Solution does not meet simulator functional requirements
 - Detailed requirements at this stage will help → Simulator Vendor can assist

• Training overlap between Old and New controls
 o Plan for hardware and software switchover
OUR TECHNOLOGY FOR SIMULATOR DCS IMPLEMENTATION

Recent Simulator Digital Control Upgrades
Controls Simulation

• **Graphical Models**
 – Creation of object libraries with control algorithm blocks
 – Creation of schematics
 – Automatic process → XML / ASCII import of control sheets from plant system export
 – Manual process → manual creation of control sheet schematics
 – Accessible from within Orchid® Instructor Station

• **Non-Graphical Models**
 – C/C++ source code
 – Automatic process → translator generating database and control code
 – Manual process → manual database and coding
HMI Simulation

- Based on Real-Time Data Acquisition and Control System (capability to execute code)
- Client/Server Architecture (can run concurrently on same computer)
- Powerful Graphic Editor
 - Automatic Process → translator generating graphic pages
 - Manual Process → manual creation of graphic pages
- Database Maintenance Tools
- Supports
 - Trends
 - Alarm Lists
 - Popups (e.g. confirmation, point display, etc.)
 - etc.
- Inherent Support for Simulator Commands (e.g. Freeze/Run, Store/Restore, Backtrack/Replay, etc.)
- Highly Customizable
Instructor Station and Glass Panels Graphics

- **Real-time Advanced Visualization Environment**
- **Photo-realistic Interactive Control Room Panels (virtual panels)**
 - Instructor Mode → access to panel instrument overrides (failures)
 - Operator Mode → plant operations
- **Plant Interactive Schematics (active schematics)**
 - P&IDs
 - Electrical One-line Diagrams
 - Control Diagrams
 - etc.
- **Supports Zoom, Pan, Tilt**
- **One-world (continuous panels)**
- **Supports Importing Vector Graphics and Bitmaps**
- **Accessible from within Orchid® Instructor Station and Orchid® Touch Interface**
Integration of Controls / HMI simulation / Glass Panels

Orchid®
Touch Interface

+

Orchid®
Graphic Editor

+

Orchid®
Control System
Examples of DCS/I&C on L3Harris Simulators

Westinghouse
Common Q
AC160
Ovation

SIEMENS
OM690
SPPA-T2000
SPPA-T3000
TELEPERM ME
SIMATIC PCS7

MITSUBISHI ELECTRIC
MELTAC

ABB
Advant Controller 160
Advant Controller 450
MicroSCADA
Symphony Plus
OS500
UNITROL

Schneider Electric
TRICON
Foxboro I/A

ALSTOM
ALSPA P320
ALSPA CONTROSTEAM

Cegelec
SIP

Thales
DPS

HOLLiAS

The company logos on this page are the company logos of their respective companies. The trademarks on this page are the trademarks of their respective companies or their providers. Company logos and trademarks on this page are provided for illustrative purposes only.
Recent Case Studies

Recent Simulator Digital Control Upgrades
TH1: Project Overview

- Plant: Tihange Unit 1 (Belgium)
- End Customer: ENGIE Electrabel
- Contractor: ENGIE Tractebel
- Plant Modification: Replace the CEGELEC Turbine and Control Systems with a GE Alspa ControSteam on the Dual-Turbogenerator Unit 1 simulator

- Strategy
 - Controls \rightarrow Graphical simulation with Orchid® Modeling Environment
 - HMI \rightarrow Simulation with Orchid® Control System

- Status: Ready-for-Training (RFT) May 2019
TH1: Controls Solution

- Orchid® Modeling Environment library replicating ControSteam functional block
- Mature library used on multiple projects
TH1: HMI Solution

- Orchid® Control System HMI simulation
- Features tailored to customer requirements
PSL: Project Overview

• Plant: St. Lucie (Florida, USA)
• End Customer: Florida Power & Light
• Plant Modification: Replace previous Rods Control System with Westinghouse Ovation; retain other previous controls

• Strategy
 − Previous Controls → Non-Graphical simulation, L3Harris-developed Translator
 − Previous HMI → Simulation with Orchid® Control System, L3Harris-developed Translator
 − Ovation Controls → Non-Graphical simulation, DCS Vendor Translator
 − Ovation HMI → DCS Vendor emulation

• Status
 − Unit 1 Glass Panels Simulator Ready-for-Training (RFT) June 2019
 − Unit 2 Glass Panels Simulator Ongoing, Planned RFT 4Q 2019
 − Unit 2 Full Scope Simulator Planned RFT 1Q 2020
PSL: Multi-Phase Approach

• Simulator reference to Plant Unit #2

• Plant DCS replacement schedule requires training first on Unit #1

• Differences between both Units
 − Reactor core, rods and instrumentation configuration
 − Shutdown cooling systems

• Simulator development and initial training on Glass Panels simulator

• Orchid® Control System and Ovation HMI integrated in soft panels

• Unit #2 Glass Panels simulator developed in next phase, followed by Full Scope Simulator
SQ1: Project Overview

- **Plant**: Susquehanna (Pennsylvania, USA)
- **End Customer**: Talen Energy
- **Plant Modification**: Replace existing Automatic Voltage Regulators (AVRs) by new ABB UNITROL series Digital AVR (DAVR) system

Strategy
- Modification of current Automatic Voltage Regulator (AVR) electrical model
- Functional simulation of the ABB Control algorithms in simulator using Orchid® Modeling Environment schematics
- Implementation of simulated simplified Excitation Control Terminal (ECT) HMI using Orchid® Control System HMI Simulation

Status
- Project completed in 4Q 2019
Recent Simulator Digital Control Upgrades
Conclusions

• Digitalization of analog controls or further upgrades to existing DCSs will continue into future

• Several technical and non-technical factors to be considered before selecting simulator digital controls implementation solution

• L3Harris has extensive experience in implementing digital controls in legacy simulators using multiple strategies (stimulation, emulation, simulation, hybrid)

• Orchid® simulation suite offers all features required for digital controls implementation in fully integrated environment for
 − operator training simulators (FSS and classroom)
 − engineering simulators
Recent Simulator Digital Control Upgrades
Simulator Implementation Strategies

- Stimulation and Emulation very similar from a Simulator Environment standpoint
 - Main difference is the Hardware Footprint
 - DCS seen as “external system” with communication link to simulator environment
 - Plant DCS software runs as-is, or with minimal modifications in simulator
 - Availability of emulator / virtual controller depends on DCS vendor

- Simulation of controls come in many flavors
 - Automated translation
 - Available from DCS vendor
 - Available or developed by simulator vendor
 - Simulation models developed manually

- Simulation of HMI developed manually or partly automated translation
 - Fully-automated translation is possible but seldom the most advantageous solution

- Hybrid solutions typically involve Simulated controls and Stimulated / Emulated HMI
Combining Simulator DCS Upgrade with Platform Upgrade

- Simulator Platform at or near End-of-Life → Reasons to consider combining a Platform Upgrade
 - Incompatibility of current platform with newly introduced hardware or software (HMI and/or controls)
 - Obsolescence prevents increasing capacity (new test bench, development simulators, etc.)
 - Many activities required for Simulator Platform Upgrade already needed for DCS Upgrade
 - Software installation, setup, testing program, etc.
 - Combining both can result in valuable savings over sequential upgrades
 - Simulator budgets are being reduced throughout the industry, it might be easier to get funding through a plant project by building a solid case
 - DCS Upgrade project will end with larger than usual non-DCS deficiency backlog
 - During DCS Upgrade project, fewer resources to address non-DCS deficiencies
 - Non-DCS deficiencies will be discovered during the project’s extensive testing program
 - Be prepared to tackle this additional workload
 - Latest simulation technology is more efficient, intuitive, and with better troubleshooting features
 - A state-of-the-art, modern platform delivered with a comprehensive training program refreshes your simulator’s performance, capabilities and maintenance engineers’ skillset