
DERIVING ARCHITECTURE DESIGN VARIANTS FOR SYSTEM OPTIMIZATION
FROM DESIGN SPACE DESCRIPTIONS EXPRESSED USING A UML PROFILE

Alexander Wichmann
Francesco Bedini
Ralph Maschotta

Armin Zimmermann

Technische Universität Ilmenau
Department of Computer Science and Automation

System and Software Engineering Group
PO-Box 100 565, 98684 Ilmenau, Germany

Alexander.Wichmann@tu-ilmenau.de

ABSTRACT

In complex (dynamic) systems, models are usually too complex for a direct evaluation, and simulation
is the method of choice (indirect optimization). Another aspect is the structure of the design space for
complex system. In a recent paper of the authors, an approach is presented for design space description
with a UML profile-based description of architectural variations of complex dynamic systems. In order to
execute a simulation of a system variant, one has to be chosen based on the used heuristic, and specified in a
standardized way to be used for constructing the actual simulation model with the use of a library of template
models. This paper approaches a method to automatically generated individual UML object models from
the design space specification for a given parameter selection.

Keywords: UML profile, architecture design space description, system optimization, design variants

1 INTRODUCTION

Model-based systems design is an important help in the design process of complex systems and aims at
reduced risks and better design decisions without the need to implement costly prototypes. In the end, each
engineering task can be viewed as an optimization problem of finding the best design alternative under given
constraints. However, automatic optimization methods can often not be used because of the complexity of
the problem field. Optimization of linear systems with numerical parameters is a well-understood area of
operations research. However, in complex (dynamic) systems, models are usually too complex for a direct
evaluation, and simulation is the method of choice (indirect optimization) (van Leeuwen et al. 2014). In
order to find the optimal system architectures, heuristic techniques can be used, which is an important and
widely covered research area (Liberti and Maculan 2006, Fu 1994, Carson and Maria 1997).

Another aspect is the structure of the design space — as long as it can be described as a multidimensional
space with continuous or discrete numerical values, well-known heuristics such as simulated annealing can
be applied. This is not sufficient any more in all cases where the architecture of a system or choice of used
technology should be decided in an optimal way. Selecting a certain design parameter value (which decides
about using a specific communication technology, for instance) may lead to additional parameters that only

SpringSim-Mod4Sim 2017, April 23-26, Virginia Beach, VA, USA
©2017 Society for Modeling & Simulation International (SCS)

Wichmann, Bedini, Maschotta and Zimmermann

emerge because of this choice. In such less structured settings, it is already unclear how to describe the
design space itself without enumerating the set of all variants (which is usually prohibitively large).

A solution for this problem has been proposed recently, with a UML profile-based description of architecture
variants of complex dynamic systems (Wichmann et al. 2017), which is depicted in Figure 1. This meta
model allows to describe multi-dimensional design spaces which may change their inner structure based on
certain parameter settings, among others. A model of a system can be structured as a class representing
the system. This system class has associations to component classes, which have properties and may have
associations to other component classes. Variants of system component properties can be specified by
value variant stereotypes, which extends the UML meta class Property. Properties can be classified into
numerical properties, optional properties, enumeration-based attributes, fixed attributes or derived attributes.
For each category, a separate stereotype is defined, which owns different properties to specify the variants of
corresponding Property element. In contrast to this, instance-based properties are specified by associations
and allow hierarchical variant specification of the associated class. To model such hierarchical relations
between classes, the UML meta class Dependency is extended with variant stereotypes in order to vary
instance-based properties, which are specified by associations to other classes. A Dependency relation
defines that a class depends on a single supplier class or set of supplier classes (OMG 2015). In general,
variant specification of instance-based properties defines that instances of a supplier class should be assigned
to a property of the depending class. How many instances should be created and how these instances are
configured, should be defined through specializations. A detailed specification of this meta model extension
can be found in (Wichmann et al. 2017).

«Stereotype»
intervalValueVariant

min : Real [1]
max : Real [1]
step : Real [1]

«Stereotype»
typeValueVariant

type : DataType [1]
values : ValueSpecification [*]
ordered : Boolean [1]

«Stereotype»
listValueVariant

«Stereotype»
derivedValueVariant
formula : Behavior [1]

«Stereotype»
fixedValueVariant

value : ValueSpecification [0..1]

«Stereotype»
optionalValueVariant

«Metaclass»
UML::Property

«Stereotype»
derivedInstanceVariant

creationBehavior : Behavior [1]
oppositeTarget : Property [0..1]
variantClass : Class [*]

«Stereotype»
instanceVariant

target : Property [1]
uniqueInstances : Boolean [1]

«Metaclass»
UML::Dependency

«Stereotype»
countFixedInstanceVariant

instanceCount : Integer [1]
instanceList : InstanceSpecification [*]

«Stereotype»
countVariableInstanceVariant

minimalCount : Integer [1]
maximalCount : Integer [1]
step : Integer [1]
instanceList : InstanceSpecification [*]

Figure 1: UML Profile diagram for System Architecture Variant Specification (Wichmann et al. 2017).

An approach of automatic indirect optimization method is already presented in (Wichmann et al. 2015),
where possible system architecture variants are determined by heuristic optimization methods and evaluated
by simulating the system model iteratively. There are several possible approaches to implement an opti-
mization heuristic: One is the classic implementation by using a standard programming language. In our
previous work, this has already been done in the programming language C++. To model an optimization
process completely, both structure and behavior have to be described. The Eclipse Modeling Project (EMP)
can be used for model-based development of domain-specific applications. In (Giese et al. 2009) a special

Wichmann, Bedini, Maschotta and Zimmermann

Story-Diagram, which is an enhancement on an activity diagram, is used to model the behavior of UML
class diagrams. The Object Management Group (OMG) defines the fUML (Semantics Of A Foundational
Subset For Executable UML Models, (OMG 2013b)) to realize models with executable behavior. The au-
thors of (Lazar et al. 2010) present a special action language for fUML activity diagrams. In another related
work, the Action Language for Foundational UML (ALF (OMG 2013a)) is used to describe the behavior
inside fUML models of cyber-physical systems (Gerlinger Romero et al. 2013).

An indirect optimization approach is realized using an approach of model-based specification of executable
system optimization processes based on activity diagrams in our previous work (Wichmann et al. 2016).
UML class diagrams and activity diagrams (OMG 2013b) are used to model structure and behavior of opti-
mization processes of a system, which should be integrated into C++-based applications. A C++ represen-
tation of the models are generated based on these models using a UML4CPP generator (Jäger et al. 2016).
These classes can be used to execute the defined optimization process by using a C++ fUML-conform ex-
ecution engine, which is defined in a model-based way and automatically generated as well (Bedini et al.
2017) .

In order to execute a simulation of a system variant, one has to be chosen based on the used heuristic, and
specified in a standardized way to be used for constructing the actual simulation model. An open question is
now how to describe one selected variant in this way and how to interface the usually numerical parameter
descriptions of heuristics with such a less structured variant description.

This paper presents a method to automatically generate individual UML object models from the design
space specification. Technically, the Eclipse modeling project and the Sirius project are used which enable
a more effective realization of domain-specific languages than other approaches (Eclipse 2014, El Kouhen,
Amine and Dumoulin, Cedric and Gerard, Sébastien and Boulet, Pierre 2012). The paper is structured as
follows: The subsequent section specifies how to create different architecture variants depending on heuristic
decisions. Section 3 presents an architecture variants model of a communication system and its variation
creation as an example.

2 ARCHITECTURE VARIANT CREATION FOR HEURISTIC OPTIMIZATION METHODS

This section describes the approach of generating individual UML object models from a design space de-
scription in support of system optimization.

2.1 Workflow for System Architecture Optimization

Figure 2 presents a workflow of system architecture optimization. To optimize a system architecture, the
system design has to be modeled first. System components, their properties as well as their connections to
other components are specified here. This is done using the widely accepted and standardized UML (OMG
2015) and can be visualized with UML class diagrams. The system architecture optimization process re-
quires information about how such a system design model can be varied in order to select an optimal system
architecture among these variants. For that, the previously introduced variant profile is applied to the system
design model. Variant-specific stereotypes are available inside the model for this purpose and can be used
to describe value variants as well as instance variants. The resulting model is called architecture variants
model (Wichmann et al. 2017).

An architecture variants model describes the design space of all possible architecture variants, which has
to be given by the system designer and is used as an input for the system optimization process. During
execution of system architecture optimization, a heuristic is executed iteratively and creates and evaluates

1Generators and execution engine are available at the MDE4CPP project home page at sse.tu-ilmenau.de/mde4cpp .

deniz
Typewritten Text
(Generators and execution engine are available at sse.tu-ilmenau.de/mde4cpp).

Wichmann, Bedini, Maschotta and Zimmermann

create system architecture

optimized system
architecture

create architecture
variants model

execute system
architecture
optimization

create system
design

System design
model

Architecture
variants model

:Profile
<<datastore>>

variantsProfile

Figure 2: Main Steps in Architecture Optimization.

architecture variants in order to find the best system architecture. The approach of creation system architec-
ture variants is specified in Section 2.4.

In our UML setting, system architecture variants are instances of the architecture variants model (Wichmann
et al. 2017). The OMG defines the class InstanceSpecification inside the UML specification to describe in-
stances of a modeled system. In general, InstanceSpecification represents an instance of a UML Classifier
like Class or Interface. InstanceSpecification includes the property classifier, defining which Classifier is
represented. Each Property of a Classifier is assigned an explicit value by using a UML ValueSpecification
interface. ValueSpecification is used to assign an explicit value to a specific property. Values of primi-
tive types are configured using LiteralSpecification and its specializations. Enumeration and instances of
associated classifiers are described by InstanceValue, which includes references to corresponding Instance-
Specification elements. Details for the specification of each element can be found in the UML specifica-
tion OMG2013b.

However, InstanceSpecification is used for the description of an architecture variant. As a standardized
element of UML, it is suitable as an interface between heuristic and architecture generator. The task of an
architecture generator is to generate a simulation model of a current architecture variant. Thus, this generator
requires knowledge about the used simulation tool in order to build valid simulation models. The heuristic
is independent of simulation-specific information by using InstanceSpecification as the interface, and can
be used for several simulation tools without additional effort. Furthermore, the use of InstanceSpecification
as interface allows easy exchange of architecture generators as well as the used heuristics.

2.2 Top-level Behavior of Heuristic Execution

The action execute system architecture optimization of Figure 2 realizes an approach of indirect optimiza-
tion (Wichmann et al. 2016) in model-based way. This approach uses a heuristic to create architecture
variants. The general top-level behavior of a heuristic is described by an activity diagram, which is shown in
Figure 3. Three ingoing activity parameter nodes and one outgoing activity parameter are used. The ingoing
nodes for termination condition and architecture variants model are placed on top of the activity. This data
is not changed during the whole optimization process, but a token has to be put on this node (given by Data-
StoreNode) in order to fulfill UML-conform activity execution behavior. The third ingoing parameter node
provides the result of the last loop execution (or invalid result at first execution). An architecture variant is
placed on the outgoing parameter node. This variant can be a newly created one, which should be evaluated,
or the best found architecture variant, if the overall optimization is finished.

If the heuristic is executed for the first time, an architecture variant is created randomly. How this task is
done, is described in Section 2.4. Otherwise, the current evaluation result is compared to the result of the
current best variant using an objective function that should be maximized or minimized. A heuristic-specific
termination condition is checked afterwards. If this condition is fulfilled, the algorithm is finished and the

Wichmann, Bedini, Maschotta and Zimmermann

ExecuteHeuristic .

: Evaluation-
Result

termination condition architecture variant
model

: Instance-
Specification

create
InstanceSpecification

check termination
condition

modify
InstanceSpecification

get root class from
variant model

rootClass :
Class

: Instance-
Specification

[else]

[termination condition
is fulfilled]

[firstExecution
== true]

[else]

Figure 3: Top level behavior of heuristic.

resulting best variant is placed on the outgoing activity parameter node. Otherwise, the architecture variant
is modified, which is described in Section 2.5, and the iteration loop starts over.

2.3 Software Design of Architecture Variant Creation

This section describes the class structure of the architecture variant creation during the presented optimiza-
tion loop execution. Figure 4 presents the corresponding class diagram of this approach. Architecture vari-
ants are calculated by a heuristic, which implements the interface XHeuristic. The interface provides the
function execute, which is executed inside the optimization loop and implemented by class BaseHeuristic.
This class provides basic functionality for checking termination conditions, comparison of the current archi-
tecture variant against previous and best variants, as well as creating the next architecture variant. This class
should be inherited from and thus specialized by example heuristics such as simulated annealing, which will
use the provided functionality and add their specific behavior or overwrite the defaults of BaseHeuristic.

InstanceSpecificationGenerator
randomGenerator : XRandomGenerator
InstanceSpecificationGenerator(randomGenerator :

XRandomGenerator)
createInstanceSpecification(aClass : Class) :

InstanceSpecification
updateValueSpecification(parent : InstanceSpecification,

property : Property, difference : Real)
createInstanceValue(parent : InstanceSpecification,

property : Property, class : Class)
removeInstanceValue(parent : InstanceSpecification,

property : Property, index : Integer)

«interface»
XNumberGenerator

requestValue(minimalValue : Real,
 maximalValue : Real, step : Real) : Real

BaseHeuristic

instSpecGenerator : InstanceSpecificationGenerator
randomGenerator : XRandomGenerator

«interface»
XHeuristic

execute(evaluationResult : EvaluationResult) : ArchitectureVariant

RandomGenerator<<create>>

randomGenerator

instSpecGenerator

randomGenerator

Figure 4: Class structure of architecture variant creation approach.

Wichmann, Bedini, Maschotta and Zimmermann

BaseHeuristic owns a reference to an XNumberGenerator interface, which is used to choose a number
based on a given interval. The interface is realized by a random generator with uniform distribution. Al-
ternatively, a random number generator with Gaussian distribution or even deterministic generator can be
used for instance. The heuristic should specify its required type of distribution. Furthermore, there is an
InstanceSpecificationGenerator, whose instance is assigned to BaseHeuristic. Additionally, InstanceSpec-
ificationGenerator includes a reference to an XNumberGenerator, which is handed over in the constructor
by the heuristic. In addition to the creation of UML conform InstanceSpecification instances, the task of In-
stanceSpecificationGenerator is to manipulate existing InstanceSpecification instances according to inputs
of the heuristic.

2.4 Creation of Architecture Variants

This section specifies the behavior to create an individual architecture variant. The architecture variants
model may specify a root class, at which the variant creation should start. If such a root class is not specified,
the variants model is searched for a class, which is not owned by another class. If such a class is found, it is
used as root class. Otherwise, the algorithm cannot be executed and the optimization fails.

CreateInstanceSpecification

: Class : InstanceSpecification

getOwnedAttributes

createUMLInstanceSpecification

getClientDependency

createValueSpecification

createInstanceValue

setInstance-
SpecificationSlots: InstanceSpecification

: Dependency[*] Slot[*]

Slot[*]: Property[*]

*

*

: Class

: Class

Figure 5: Behavior of Instance Specification Creation.

Figure 5 presents an activity diagram specifying the top-level behavior for variant creation, which is executed
with a root class as the input parameter. The variant is created in three steps, which can be carried out in
parallel: The first step is to create an instance of UML InstanceSpecification, which represents a specific
UML class. Thus, InstanceSpecification owns property classifier, which includes a reference to the class
given as ingoing parameter.

Secondly, a list of all owned attributes are selected from Class parameter. For each element of resulting
Property list, action createValueSpecification is executed. How does a value, which should be assigned
to current Property instance, is determined? All stereotypes, which are applied to the Property instance,
are selected. Variant stereotypes, which extend UML meta class Property are analyzed here. If stereotype
intervalValueVariant is applied, a value is selected by use of XNumberGenerator’s function requestValue(...).
The required parameters are already defined inside the stereotype. A UML LiteralReal is created and the
selected value is assigned to it. Furthermore, a slot is created with references to the Property instance and
LiteralReal instance. For stereotype listValueVariant, a value is requested in the same way. In difference to
the previous stereotype, a list with a size corresponding to the value is created instead of a single literal.

Another stereotype is optionalValueVariant, which results in a Boolean literal as its value specification. The
decision, which Boolean value should be used, is simply chosen with interval [0,1] with step 1. Thus, the
result of XNumberGenerator execution can be either ’0’ or ’1’. The last stereotype with variants possibility is
called typeValueVariant. Since values can also include non-numeric values or values with different distances,
a value request directly based on the list values is not possible. Alternatively, the value selection is done

Wichmann, Bedini, Maschotta and Zimmermann

indirectly via the list index. An index is chosen by the XNumberGenerator and the value, which is placed
on this index, is assigned to the slot corresponding to the Property instance.

Stereotype derivedValueVariant includes a behavior, which calculates a value deterministically. This be-
havior is executable by using fUML execution engine. Thus, the required value can calculated here. If the
stereotype fixedValueVariant is assigned to the Property instance, a ValueSpecification is already defined and
is assigned to the slot here. If no variant stereotype is applied to a Property, but a default value is specified,
this value will be used. Otherwise, LiteralNull is applied to the corresponding slot instance, meaning that
no value is defined explicitly.

In a similar way, the third step creates variants, which are described by instance variant stereotypes. For that,
all client dependencies are selected from Class parameter and InstanceValue instances are created based on
applied stereotype. Stereotype countFixedInstanceVariant defines a fixed count of instances of a supplier
class, which should be created. It is possible, that InstanceSpecification instances are already preconfigured,
which are used instead of creating new instances. Each preconfigured InstanceSpecification is checked, if
all class properties are existing and assigned to a ValueSpecification. If a property is missing, it is created
by the InstanceSpecificationGenerator. Similarly, countVariableInstanceVariant is processed, in which the
instance count is chosen by XNumberGenerator. In a similar way to derivedValueVariant, the stereotype
derivedInstanceVariant owns a creation behavior, which is executed for all combinations of input instances.
Finally, action setInstanceSpecificationSlots inserts the results of the second and third step into the created
InstanceSpecification.

2.5 Modifications of Architecture Variants

After creating the first architecture variant, further variants may be computed by changing the previous vari-
ant in at least one property of an InstanceSpecification or even adding or removing an InstanceSpecification.
For some optimization heuristics a notion of distance between parameter values is assumed (temperature-
based selection of next parameter value in simulated annealing, for instance). This assumption cannot easily
be transferred to our complex architecture variants, where there may not be any relation depending on the
order of settings. This problem will be tackled in future work; for the moment, we assume that the encoding
sequence of values is exploited.

ModifyInstanceSpecification

Architecture
Variant

Architecture
Variants Model

modify system
structure

select variable
properties

<<structured>>
Loop

Setup

Test

Body

: Instance-
Specification

: Property[*]

is property list not
empty && steps > 0

select
property

choose value
difference

modify property
value

: Property

: double

: Instance-
Specification

Figure 6: Behavior of Architecture Variant Modification.

To make matters worse, such a distance may be needed also for the complex multi-dimensional design
space, and it would not make sense to use space-geometrical (Pythagorean) assumptions on parameters.
Instead, we assume here that one step in one parameter is ’as important’ as any other parameter step, and

Wichmann, Bedini, Maschotta and Zimmermann

thus propose to apply Manhattan distance as an approximation of ’how distant’ two parameter settings are
(i.e., variants, or points on the design space). One step is defined as the minimal difference of property
values, which is specified also for real-valued parameters. A minimal difference for intervalValueVariant
is defined by its property step for instance. One value step of typeValueVariant-properties is defined as an
index increment or decrement. For countVariableInstanceVariant stereotypes, the minimal step is defined
by adding or removing one instance. For each heuristic execution, a calculated step count is available, which
can be used to modify the architecture variant. The actual count calculation has to be defined adaptively by
specialized heuristics if necessary.

Figure 6 proposes the behavior for modifying an architecture variant using an activity diagram in two steps.
Structural modifications on InstanceSpecification instances are performed first. For that, all combinations
of countVariableInstanceVariant-based instance counts are calculated. XNumberGenerator is used to select
one out of this combination set. InstanceSpecification instances are created or deleted depending on the
selection result. The step count is decreased by the number of InstanceSpecification creations and deletions.
The remaining step count is used to change property values of existing InstanceSpecification instances. A
list of all properties with value variant stereotype is received by InstanceSpecificationGenerator. While the
step count is greater than zero and there are still unmodified properties, a property and a difference value as
well as the direction of change is selected randomly using XNumberGenerator. The value setting is done by
using InstanceSpecificationGenerator.

All presented methods are realized model-based using fUML and is completely executable.

3 AN APPLICATION EXAMPLE

This section describes the derivation of concrete system variant instances for a simplified communica-
tion network, in which network nodes communicate using wired and wireless communication protocols.
This communication network and the following communication network variants model has been presented
in (Wichmann et al. 2017). An EndNode can be a server, personal computer or other gadgets and produces
data, which should be sent to another EndNode. For that, EndNode instances can provide WLAN tech-
nique or Ethernet slots. Additionally, AccessPoint instances could be used to cover large distance between
EndNode or as connection of WLAN-based and Ethernet-based communication.

3.1 Communication network variants

Figure 7 presents an architecture variants model, which is used by a system optimization process in order
to find the best architecture. A Network includes instances of Interface NetworkNode, which is realized by
classes EndNode and AccessPoint. To specify the count of class instances, which should be owned by Net-
work, Dependency connections are created between Network and EndNode as well as AccessPoint. EndNode
is preconfigured with instance specifications and should not be varied. The first EndNode represents a smart
phone providing WLAN features, but not having an Ethernet port. The other EndNode instance is a personal
computer with one Ethernet port and without WLAN. This information is specified by using the variant
stereotype countFixedInstanceVariant.

AccessPoint instances can be varied in their number as well as their properties. For that, stereotype count-
VariableInstanceVariant is applied to the Dependency connection. At least one and not more than three
AccessPoint instances may exist. Additionally, several properties of AccessPoint are varied, which is spec-
ified by value variant stereotypes. Position of AccessPoint and count of Ethernet ports are specified by
intervalValueVariant. Furthermore, WLAN feature is defined as optional. Connections are established be-
tween two nodes, in which a connection can be realized by WLANConnection or LANConnection. Which
connection is to be created, is defined by stereotype derivedInstanceSpecification. This stereotype owns a

Wichmann, Bedini, Maschotta and Zimmermann

«variant»
CommunicationNetwork

EndNode
datarateMean : Real [1] = 5.0
datarateVariance : Real [1] = 50.0

«interface»
Connection

dataRate : Real [1]
networkNodes : NetworkNode [2]

WLANConnection
«derivedValueVariant» distance : Real [1]
maxRange : Real [1] = 50.0
dataRate : Real [1] = 50.0

Network
networkNodes : NetworkNode [*]

AccessPoint
«intervalValueVariant» countLANPorts : Integer [1]
«optionalValueVariant» isWLANExisting : Boolean [1]
«intervalValueVariant» position_x : Integer [1]
«intervalValueVariant» position_y : Integer [1]
«intervalValueVariant» position_z : Integer [1]

LANConnection
dataRate : Real [1] = 100.0

«interface»
NetworkNode

name : String [1]
position_x : Integer [1]
position_y : Integer [1]
position_z : Integer [1]
countLANPorts : Integer [1] = 0
isWLANExisting : Boolean [1] = false
connections : Connection [*]

<<countFixedInstanceVariant>>

<<countVariableInstanceVariant>>

<<derivedInstanceVariant>>

networkNodes[2]
connections[*]

networkNodes[*]
rootClass = <class> Network

target = <Property> NetworkNode::connections
uniqueInstances = true
creationBehavior = <Activity> CreateConnection
variantClass = {WLANConnection, LANConnection}
oppositeTarget = Connection::networkNodes

target = <Property> Network::networkNodes
uniqueInstances = true
instanceCount = 2
instanceList = {node1, node2}

formula = <FunctionBehavior>
 calculateDistance

 min max step
countLANPorts 0 4 1
position_x 0 1000 200
position_y 0 500 100
positoin_z 0 200 100

target = <Property> Network::networkNodes
minimalCount = 1
maximalCount = 3
step = 1
instanceList = {}

Figure 7: Architecture Variants Model for a Communication Network (Wichmann et al. 2017).

creation behavior, which is executed for each combination of two NetworkNode instances. This behavior
specifies that a WLANConnection can only be created if both nodes provide WLAN. Similarly, a LANCon-
nection requires a free Ethernet slot on each node. If both connections are possible, the decision can be
influenced by the heuristic.

3.2 Resulting InstanceSpecification instances

The presented approach for deriving concrete system variant instances is specified in a UML-conform way
in our system optimization model. Similarly, the architecture variants model is set up as a UML model using
the variant profile. In order to execute this, our UML4CPP generator (Systems and Software Engineering
Group 2016) is used to transform the models into executable C++ code, which is compilable without further
implementation efforts. Finally, the resulting system optimization application is executable through the
use of our fUML-conform execution engine. The optimization process is executed and several architecture
variants are generated based on the architecture variants model of the communication network.

The heuristic is executed for the first time. Thus, a first variant has to be created by executing the behavior
presented in Section 2.4. Figure 8 shows the resulting architecture variant as an example. A network in-
cludes two preconfigured EndNode instances as well as two AccessPoint instances. An AccessPoint supports
WLAN and two Ethernet ports. The other AccessPoint has three Ethernet ports, but no WLAN. Connections

Wichmann, Bedini, Maschotta and Zimmermann

between theseNetworkNode instances is realized as follows: LANConnection is realized between node2 and
accessPoint1 as well as between accessPoint0 and accessPoint1. Node1 is connected to accessPoint0 by a
WLANConnection. This architecture variant is evaluated by executing the simulation loop.

network:Network

wLANConncetion0
:WLANConnection

datarate = 50
distance = 660
maxRange = 5000

lANConncetion1
:LANConnection

datarate = 100

node1:EndNode

name = "smart phone"
postion_x = 250
position_y = 50
position_z = 100
countLANPorts = 0
isWLANExisting = true

node2:EndNode

name = "computer"
postion_x = 650
position_y = 450
position_z = 100
countLANPorts = 1
isWLANExisting = false

accessPoint0
:AccessPoint

name = null
postion_x = 800
position_y = 400
position_z = 0
countLANPorts = 2
isWLANExisting = true

accessPoint1
:AccessPoint

name = null
postion_x = 200
position_y = 0
position_z = 100
countLANPorts = 3
isWLANExisting = false

datarate = 100

lANConncetion0
:LANConnection

Figure 8: Example for a Created Architecture Variant.

The heuristic is executed a second time afterwards. Now, the existing variant is modified by the behavior
specified in Section 2.5. Figure 9 presents an InstanceSpecification of communication network model after
execution the heuristic for the second time. The count of AccessPoint instances has not changed, but their
properties. Ethernet ports of accessPoint0 is increased to ’3’, while accessPoint1 decreased to ’1’. Fur-
thermore, accessPoint1 provides WLAN connections now. Thus, the connection between accessPoint0 and
accessPoint1 must be changed to WLANConnection, because the only port is occupied by the connection to
node2.

node1:EndNode

name = "smart phone"
postion_x = 250
position_y = 50
position_z = 100
countLANPorts = 0
isWLANExisting = true

node2:EndNode

name = "computer"
postion_x = 650
position_y = 450
position_z = 100
countLANPorts = 1
isWLANExisting = false

accessPoint0
:AccessPoint

name = null
postion_x = 600
position_y = 200
position_z = 0
countLANPorts = 3
isWLANExisting = true

accessPoint1
:AccessPoint

name = null
postion_x = 800
position_y = 300
position_z = 100
countLANPorts = 1
isWLANExisting = true

network:Network

wLANConncetion0
:WLANConnection

datarate = 50
distance = 394
maxRange = 5000

wLANConncetion1
:WLANConnection

datarate = 50
distance = 245
maxRange = 5000

lANConncetion0
:LANConnection

datarate = 100

Figure 9: Example for Modified Architecture Variant.

The system optimization process is continued until the termination criterion is fulfilled and the best variant
is returned in the end.

Wichmann, Bedini, Maschotta and Zimmermann

4 CONCLUSION

The paper presents an approach for deriving concrete design variant instances from architecture design space
descriptions based on a UML profile, with the goal of supporting automatic system architecture optimization.
The behavior for creating architecture variants is specified by standard UML meta model elements, which is
executable by the application of our UML4CPP generator and C++ fUML-conform execution engine. The
derivation of design variants is shown with a simplified communication network model.

Future steps include the investigation of optimization methods suitable for system architectures. The opti-
mization loop will be further refined, in particular for variant evaluations with complex objective functions
defined on the model. Furthermore, constraints should be added to the variant model in order to allow formal
validity checks for system variants.

REFERENCES

Bedini, F., R. Maschotta, A. Wichmann, S. Jäger, and A. Zimmermann. 2017. “A Model-Driven C++-fUML
Execution Engine”. In 5th Int. Conference on Model-Driven Engineering and Software Development,
MODELSWARD 2017. Technische Universität Ilmenau. accepted for publication.

Carson, Y., and A. Maria. 1997. “Simulation Optimization: Methods And Applications”. In Proc. of the
29th Winter Simulation Conference, WSC ’97, pp. 118–126.

Eclipse 2014. “Sirius”. http://www.eclipse.org/sirius/.

El Kouhen, Amine and Dumoulin, Cedric and Gerard, Sébastien and Boulet, Pierre 2012. “Evaluation of
Modeling Tools Adaptation”. Available: https://hal.archives-ouvertes.fr/hal-00706701.

Fu, M. C. 1994. “A Tutorial Overview of Optimization via Discrete-Event Simulation”. In 11th Int. Conf.
on Analysis and Optimization of Systems, edited by G. Cohen and J.-P. Quadrat, Volume 199 of Lecture
Notes in Control and Information Sciences, pp. 409–418. Sophia-Antipolis, Springer-Verlag.

Gerlinger Romero, A., K. Schneider, and M. Goncalves Vieira Ferreira. 2013, Sept. “Towards the applicabil-
ity of alf to model Cyber-Physical Systems”. In Computer Science and Information Systems (FedCSIS),
2013 Federated Conference on, pp. 1427–1434.

Giese, H., S. Hildebrandt, and A. Seibel. 2009, 0. “Improved Flexibility and Scalability by Interpreting Story
Diagrams”. In Proceedings of the Eighth International Workshop on Graph Transformation and Visual
Modeling Techniques (GT-VMT 2009), edited by T. Magaria, J. Padberg, and G. Taentzer, Volume 18,
Electronic Communications of the EASST.

Jäger, S., R. Maschotta, T. Jungebloud, A. Wichmann, and A. Zimmermann. 2016. “An EMF-like UML
Generator for C++”. In 4th Int. Conference on Model-Driven Engineering and Software Development,
MODELSWARD 2016. Technische Universität Ilmenau. submitted for publication.

Lazar, C.-L., I. Lazar, B. Parv, S. Motogna, and I.-G. Czibula. 2010. “Tool Support for fUML Models”. In
Int. J. of Computers, Communications & Control.

Liberti, L., and N. Maculan. 2006. Global Optimization: From Theory to Implementation. Springer Verlag.

OMG 2013a. “Concrete Syntax for a UML Action Language: Action Language for Foundational UML”.
Technical report, Object Management Group.

OMG 2013b. “Semantics of a Foundational Subset for Executable UML Models”. Technical report, Object
Management Group.

OMG 2015. “Unified Modeling Language (OMG UML), Version 2.5”. Technical report, Object Manage-
ment Group.

Wichmann, Bedini, Maschotta and Zimmermann

Systems and Software Engineering Group 2016. “Model Driven Engineering for C++ (MDE4CPP), sse.tu-
ilmenau.de/mde4cpp”.

van Leeuwen, C., J. de Gier, J. O. de Filho, and Z. Papp. 2014. “Model-Based Architecture Optimization for
Self-Adaptive Networked Signal Processing Systems”. In SASO 2014 - 8th IEEE International Confer-
ence on Self-Adaptive and Self-Organizing Systems.

Wichmann, A., S. Jäger, T. Jungebloud, R. Maschotta, and A. Zimmermann. 2015. “System Architecture
Optimization With Runtime Reconfiguration of Simulation Models”. In IEEE International Systems
Conference (SYSCON’15). Technische Universität Ilmenau.

Wichmann, A., S. Jäger, T. Jungebloud, R. Maschotta, and A. Zimmermann. 2016. “Specification and Exe-
cution of System Otimization Processes with UML Activity Diagrams”. In IEEE International Systems
Conference (SYSCON’16). Technische Universität Ilmenau.

Wichmann, A., R. Maschotta, F. Bedini, S. Jäger, and A. Zimmermann. 2017. “A UML Profile for the
Specification of System Architecture Variants Supporting Design Space Exploration and Optimization”.
In 5th Int. Conference on Model-Driven Engineering and Software Development, MODELSWARD 2017.
Technische Universität Ilmenau. accepted for publication.

AUTHOR BIOGRAPHIES

ALEXANDER WICHMANN received the Master’s degree in Computer Science from the Technische
Universität Ilmenau, Germany, in 2013. He is currently working towards the Ph.D. degree in the Sys-
tems and Software Engineering Group of Technische Universität Ilmenau. His main research interests
include model-based specification and execution of system optimization processes. His email address is
alexander.wichmann@tu-ilmenau.de.

FRANCESCO BEDINI received the Master’s degree in Research in Computer and Systems Engineering
with distinction from Technische Universität Ilmenau in 2016. He is currently working towards the Ph.D.
degree in the Systems and Software Engineering Group of TU Ilmenau. His main research interests in-
clude efficient generation of code from UML and fUML models and their validation. His email address is
francesco.bedini@tu-ilmenau.de.

RALPH MASCHOTTA received the Diploma degree in technical computer science from the University
of Applied Sciences Schmalkalden, Germany, in 1999 and the Ph.D. degree from Technische Universität
Ilmenau, Germany, in 2008. Since 2011, he has been a senior scientist and lecturer with the Systems
and Software Engineering Group, Faculty of Computer Science and Automation, TU Ilmenau. His main
research interests include object-oriented programming, modeling, and design of software systems, as well
as image processing and image recognition in medical and industrial applications. His email address is
ralph.maschotta@tu-ilmenau.de.

ARMIN ZIMMERMANN received the Diploma, Ph.D., and Habilitation degrees from Technische Uni-
versität Berlin, Germany, in 1993, 1997, and 2006, respectively. He has been a full Professor of systems
and software engineering since 2008 and the director of the Institute for Computer and Systems Engineering
since 2012 with Technische Universität Ilmenau, Germany. His research interests include discrete event
system modeling and performance evaluation and their tool support with embedded systems applications.
He is a member of the Industrial Automated Systems and Controls Subcommittee of the IEEE IES Technical
Committee on Factory Automation. His email address is armin.zimmermann@tu-ilmenau.de.

This work was supported by the Federal Ministry of Economic Affairs and Energy of Germany [20K1306D] and Federal
Ministry for Education and Research of Germany [01S13031A].

mailto://alexander.wichmann@tu-ilmenau.de
mailto://francesco.bedini@tu-ilmenau.de
mailto://ralph.maschotta@tu-ilmenau.de
mailto://armin.zimmermann@tu-ilmenau.de

	Introduction
	Architecture Variant Creation for Heuristic Optimization Methods
	Workflow for System Architecture Optimization
	Top-level Behavior of Heuristic Execution
	Software Design of Architecture Variant Creation
	Creation of Architecture Variants
	Modifications of Architecture Variants

	An Application Example
	Communication network variants
	Resulting InstanceSpecification instances

	Conclusion

