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ABSTRACT

In discrete event simulation development, a large conceptual leap often is made when going from the system
model to the simulation implementation. The event model, describing how events are scheduled and
executed, is implied rather than explicitly stated. This paper addresses the gap by introducing a new
visualization tool based on event graphs. Given an event graph representation of the event model, the tool
allows the developer to observe the execution and scheduling of events during simulation execution. The
use of the visualization tool encourages students to explicitly consider the event model, thus providing
additional insight to the relationship between the model and the implementation. To better support more
general discrete event simulation development efforts, including software development and verification and
validation activities, future research will consider interfacing the visualization tool with simulation software
tools and developing the capability to reverse engineer the event model from an existing simulation.

Keywords: discrete event simulation, visualization, simulation software, event graph.

1 INTRODUCTION

It is well understood that modelers and simulation developers need to understand the underlying
mechanisms that simulation software uses to manage the simulation, such as how simultaneous events are
handled (Schriber, Brunner, and Smith, 2016). Currently, the standard method for supporting simulation
development in observing the low level effect of these mechanisms is through the use of event traces
(Schriber, Brunner, and Smith, 2016). This paper presents a new software tool that provides a visualization
of the management of events through the use of event graphs (Schruben, 1983).

The modeling and simulation development process typically progresses from developing a system model
based on the system under study, to developing an event model that implements the system model, and
finally to implementing the simulation, as illustrated in Figure 1. The simulation implementation
commences with the development of a software model that is then implemented using a simulation tool, a
simulation or general purpose programming language, or even an alternative environment such as a
spreadsheet. Visualizations driven by the simulation usually tend to visualize either the system under study
or the system model. It is suggested here that a visualization of the event model is both advantageous for
the simulation developer and for use in modeling and simulation education. The authors believe that the
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event graph is an appropriate model of how the simulation implements and manages events, thus filling this
need.
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Figure 1: High level view of discrete event simulation development.

The approach taken to visualize the behavior of events is to develop a separate visualization tool with the
necessary hooks to drive the visualization from a variety of simulation environments. The visualization
includes an event graph that is highlighted to indicate the current state of execution, and a linear event
trajectory highlighting the history of event execution and the known future events. The visualization tool
provides the capability to control the advancement of the simulation execution, allowing the developer to
step through the simulation.

The visualization tool was developed for educational purposes to support a course in discrete-event
simulation that utilizes simulation tools and spreadsheets, and a course on software design for discrete-
event simulations where simulations are developed in a general purpose programming language. As a
result, the initial implementation of the visualization tool is scaled for the class of problems usually studied
in an undergraduate academic environment. However, if the use of the visualization tool proves successful,
there are many ways it might be enhanced for the development and verification of larger scale simulations.

The paper is organized in seven sections. In Section 2, the use of the event graph and the associated
visualization of event execution are described. Then, in Section 3, related work is presented that supports
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the use of the visualization concept. The software architecture developed to facilitate integrating the
visualization tool with various simulation development environments is presented in Section 4. An example
to illustrate how the visualization tool displays the actions associated with the updating of state variables
and the scheduling of future events is given in Section 5. Initial results are presented in Section 6 based on
fielding the tool in a simulation software design course. Finally, Section 7 identifies future enhancements
and extensions to the visualization tool.

2  APPROACH TO EVENT SCHEDULING AND EXECUTION VISUALIZATION

The focus of this paper is on providing a visual representation of the scheduling and execution of events in
a discrete event simulation. The approach taken is to represent the event model using the combination of
an event graph (Schruben, 1983) and an event set. The event set consists of three subsets: a set of
previously executed events, a set containing the currently executing event, and a set of pending events. By
updating this view during simulation software execution, each time a new event is scheduled and each time
a new event is executed, a clear view of the management of events is presented to the simulation developer
with the associated activity highlighted. To facilitate the updating of the visualization event set, simulation
events are considered to consist of a set of actions. A single action accounts for the updating of the state
variable values. An additional action is defined for each scheduling of a future event.

Event graphs clearly display the scheduling relationships between events in the system. An example event
graph for a simple G/G/1 queue is shown in Figure 2. Nodes in the graph represent events in the system
and edges represent the scheduling of a future event with the edge weight denoting how far in the future
the event is scheduled. Edges also can have conditions associated with them indicating the conditions for
which a future event is scheduled..

G/G/1 Server-Queue

{Q++} {Q--' B--} {B++}
i / \ o/ Start \ / End \ ’// \
- Generate —w Arrival —— — > ¢——N Depart |
\ / (8>0) Qrvn/ \ Serw/ |
t (@>0)

State Set: {Q(t), B(t)}
Event Set: {Generate (G), Arrive (A), Start Service (S), End Service (E), Depart (D)}

Figure 2: Example event graph.

Nodes also can be assigned notation indicating the change in state variable values caused by that event. For
this example, the state variables are the number of available server resources (B(t)) and the number of
entities in queue (Q(t)), where ‘t’ is simulation time measured from the beginning of the simulation. In
Figure 2, the events have the following behavior as indicated in the event graph:

e Generate (G): An entity is created and presented to the G/G/1 queuing system as an input. Schedule
an Arrive (A) event with a delay of zero time units; Schedule a Generate (G) event with a delay of
ta time units.

e Arrive (A): An entity arrives at the G/G/1 queue. Increment Q by one (Q++); If a server resource
is available (B > 0), schedule a Start Service (S) event with a delay of zero time units.
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e Start Service (S): An entity moves from the queue, seizes a server resource, and begins service.
Decrement the queue by one (Q--); Decrement the available server resources by one (B--); Schedule
an End Service (E) event with a delay of ts time units.

e End Service (E): The server completes service, the entity releases the server resource and exits the
G/G/1 queuing system. Schedule a Depart (D) event with a delay of zero time units; Increment the
available server resources by one (B++); if Q > 0, schedule a Start Service (S) event with a delay
of zero time units.

e Depart (D): An entity exits the G/G/1 queuing system.

Figure 3 demonstrates that the same system can be implemented using an alternate definition of the set of
events, requiring a different visualization of its execution. In this example, the Start Service event is
removed. Therefore, the Arrival and End Service events must be redefined to directly schedule the next
End Service event.

G/G/1 Server-Queue

{Q++(B==0); {a-(Q>0);
B (B>0)} B (Q==0)} | {B++}

B - .G .4

- Generate —»| Arrival

] \ /W Service |
\;,7,/ \ﬁ //

ta (@>0)

State Set: {Q(t), B(t)}
Event Set: {Generate (G), Arrive (A), End Service (E), Depart (D)}

Figure 3: Example alternate event graph.

The event graph provides a convenient method of illustrating the currently executing event by simply
highlighting that event on the graph and indicating the simulation time value associated with that execution.
The sequence of scheduling other events for future execution is illustrated by highlighting the edges one at
a time. What the event graph does not provide is insight into the sequence of events to be executed in the
future, or the trajectory. In addition, it is considered insightful to see the trajectory that produced the current
simulation state by showing the sequence of previously executed events. All of this is achieved with the
event set.

The event set is defined as
event set = {{set of previously executed events}, {current event}, {set of pending events}}

On initialization of the simulation, the event set is defined as {{},{},{initial set of pending events} }, where
{} denotes the empty set. The event set is visualized as an ordered sequence of events, each event defined
by its name and its execution time as shown in Figure 4. The three regions of the event set are color coded
to differentiate the three subsets. As a new event is executed, the previously executed event is moved to
the set of previously executed events, the next event in the set of pending events is moved to the current
event, and the appropriate node is highlighted in the event graph. As a new event is scheduled and its edge
highlighted in the event graph, the new event is inserted into the set of pending events in sorted order. It
should be noted that the visualization tool does not have knowledge of tie breaking strategies for
simultaneous events. Events in the set of previously executed events with identical times are ordered based
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on their execution order. In the set of pending events, events are ordered based on the order with which
they are added to the set. However, this may not be the order they are executed. Therefore, when events
have identical times that equal the current simulation time, the first in line may not be the first moved to
the current event. Rather, the visualization tool matches the executed event to the appropriate pending
event, potentially reordering the events as they transition from pending to previously executed event
subsets.

Figure 4 shows the visual display produced by the visualization tool. This display is a combination of the
event graph and the visualization event set. In this example display, the currently executing event is an End
Service event executing at time 5, color coded green in the display. There is a past history of a Generate,
Arrival, and Start Service events, all of which executed at time 0, followed by another Generate and Arrival
executed at time 5. There are currently three pending events, Departure and Start Service events scheduled
to execute at time 5 and a Generate event scheduled for time 10. The example is highlighting the action of
the End Service event scheduling a Start Service event to execute at time 5. To do so, the associated edge
between the events in the event graph is highlighted, and the scheduled event in the set of pending events
is highlighted. To accommodate event sets having many elements, the visualization display is windowed to
show only a portion of the entire event set. In general, the current event is centered on the display, producing
a view of those events recently executed and those scheduled to execute in the near future, though the tool
supports sliding the view to either side. Not shown is that the visual includes a console window. When
updating the visual, the developer can supply a string that is presented in the window, allowing them to
provide state variable information, parameters to events, or general debugging information.

SUAANS A

5
E DJS|G
. Event History
G: Generate
A: Arrive
Current Event S: Start Service
E: End Service
D: Depart
D Pending Events

Figure 4: Visualization layout.

3 RELATED WORKS

The concept of having access to the underlying event behavior is not new. Schriber, Brunner, and Smith
(2016) discuss the concept of interactive model verification. This involves introducing breakpoints into the
software or running an event trace so that event information is output to the developer to assist in verifying
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that the simulation behaves as the model specifies. These capabilities are common in discrete-event
simulation tools. When combined with a visualization of the system model, the difficulty is that there often
is a layer of abstraction between the model and the underlying event model that generates the timing of
event activity. Therefore, the developer is directly comparing the simulation’s event actions to the high
level model. This paper proposes introducing a low level event model visualization using event graphs.

Schruben (1983) introduced the concept of event graphs as a high-level model for discrete-event systems.
Event graphs provide insight into the relationships between events, but have garnered little acceptance as a
general modeling approach as the graphs are disconnected from the general thinking that modelers usually
follow. However, the utility of event graphs can be found in their capability to characterize the underlying
behavior of discrete event simulations. For example, event graphs have been found useful in proving the
equivalence of event models. (Yucesan and Schruben, 1992; Bergen-Hill and Page, 2010) This allows the
behavior of high level models that have been mapped to event graphs to be compared. This paper puts forth
that this lower level modeling of discrete event simulations is where the real benefit of event graphs arises.
The event graph is so closely related to the scheduling and execution of events that it is best used to visualize
this low level activity.

SIGMA (Simulation Graphical Modeling and Analysis) (SigmaWiki, 2016; Schruben, 1992) is a discrete
event simulation tool based on event graphs. A user defines an event graph by defining each event, the
changes that event makes to the state variable values, and the future events scheduled due to the event
occurrence. The event graph then can be simulated, allowing the user to single step through the simulation
to observe the event behavior. However, the SIGMA tool does not allow the visualization of events
generated in other software systems.

IBM Rational Rose Modeler is an example of a tool that provides insight into the relationship between the
software model and the software implementation. It is an object-oriented UML software design tool used
for visual modeling and component construction of large-scale software applications. A user creates UML
diagrams which are documented and used to generate code. The software was designed to enhance software
design and development by emphasizing the importance of conceptual models and modular software
architectures. It also provides a visual representation of the execution of the model in conjunction with the
software execution. The purpose of this paper is the development of a similar capability in discrete event
simulation.

Similar research on visualizing a scheduled sequence of activities, past, present, and future, has been
conducted on the capability to visualize CPU schedulers. Suranauwarat (2007) presents a simulator with
graphical animation intended to increase understanding on CPU scheduling algorithms. The simulator’s
animation contains a graph showing status and a separate view of corresponding color-coded timelines.
These timelines consist of labeled blocks with time indicated above. This simple yet effective representation
demonstrates the utility of the authors’ approach to other problem domains.

4 VISUALIZATION TOOL ARCHITECTURE

The event graph visualization tool presented here is designed as an add on visualization of a discrete event
simulation developed in a separate environment, either a simulation developed in a software language, a
simulation tool, or even a spreadsheet simulation. To that end, the visualization tool is designed as a
separate piece of software in which an interface is developed to integrate the actual simulation. The
visualization tool updates its view of the simulation execution at event actions. The simulation must
communicate to the visualization tool when an event action occurs and indicate the nature of the action.
The visualization tool must update the visualization display and then communicate to the simulation that it
can advance to the next event action. This message interchange allows the visualization tool to control the
advancement of the simulation. This can be done by single stepping through the actions, running through
the simulation at a specified pace, or running through the simulation as fast as possible.
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The visualization tool’s architecture is related to the model-view-controller (MVC) design pattern approach
to graphical user interface (GUI) design. A good survey of the current state of the MVC pattern is provided
in Karagkasidis (2008). This software design pattern separates the model data from its presentation and
interaction with the user. The MVC pattern is often used for GUIs and similar applications. A modified
version of this architecture was a natural choice for this tool.

Figure 5 displays the software architecture integrating the visualization tool with a simulation developed in
an arbitrary environment and highlights the interaction between the two systems. Decoupling the two
systems and providing a communication mechanism between them facilitates integrating the visualization
tool with different simulation environments. Currently, interfaces have been developed for C++ simulation
code and Excel spreadsheet simulations because both are used in our educational environment.

The architecture assumes that the simulation application is capable of identifying the points at which an
event execution is initiated and when an event schedules new events. It does not assume access to the state
variable space. On instantiation of the visualization tool, the definition of the event graph is provided to
the tool. It is the responsibility of the simulation developer to ensure this definition faithfully represents
the application’s event model. When either an event is executed (associated with the update of the state
variables) or scheduled, the application requests an update to the simulation tool display through an APL
This is passed on to the visualization tool through a message at which point the display is updated. While
this is happening, the API retains control of the simulation, forcing it to wait until the visualization tool
grants permission to continue by sending a continue message. The visualization sends a continue message
indicating the visualization mode, single stepped, paced, or as fast as possible. When the API receives the
continue message, it passes execution control back to the simulation application which continues until the
next event action.

Two features of the visualization are of note here. First, in addition to updating the display view, the update
messages may include a string that the developer passes on for display. This allows the developer to display
other information, for instance to indicate state variable changes. The second feature is that the visualization
is capable of performing basic error detection. For example, should the simulation attempt to schedule an
event that is not properly indicated by an edge in the event graph, the visualization will flag an error.

5 EXAMPLE

In this section, a brief example is presented to illustrate the graphic displays produced by the visualization
tool. The system model for this example is the G/G/1 queuing system that is described in Section 2. The
event set for this model consists of five events: Generate (G), Arrive (A), Start Service (S), End Service
(E), and Depart (D); the state set consists of two state variables: Q(t) = number of entities in the queue, and
B(t) = available server capacity. It is assumed that the simulation of the model is represented by the event
graph shown in Figure 2.

It should again be noted that an event may consist of several actions. These actions include (1) updating
the value assigned to state variables, and (2) scheduling future events. The visualization tool views the
updating of all state variables to be a single action while each scheduling of a future event is viewed as a
separate action. The simulation must send a request update message to the visualization tool after each
action for each event. The majority of discrete event simulation tools are able to support this requirement
through one of several methods.
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Figure 5: Software architecture.

The example begins at simulation time t = 2 with the second occurrence of a generate event. The system
simulation actually started empty and idle at t = 0. The first entity was generated, arrived at the queue, and
then started service, all at t = 0; this entity is scheduled to end service at t = 5. As the example begins, the
first action, state variable update, of the second Generate event is executing. The G/G/1 queuing model has
state variable values Q(2) = 0, B(2) = 0 as shown in Figure 6a. The visualization tool display, consisting
of the corresponding event graph and the associated time-stamped event set, is shown in Figure 6b. The
Generate event is colored green to indicate that it is the current event. The events Generate, Arrive, and
Start Service are shaded to indicate that they are previously executed events, and the event End Service is
colored blue to indicate that it is a future scheduled event. This display will persist until a request update
is passed from the simulation to the visualization tool.

As shown in Figure 6¢, following the request update message, the visual display updates to show the result
of the second action of the Generate event. The Generate event remains colored green to indicate that it is
still the current event. The event graph edge directed from the Generate event to the Arrive event is colored
red to indicate that a future Arrive event is being scheduled and the Arrive event is entered into the pending
event list with a time increment of 0 time units. A continue message is then issued to the simulation in order
to resume the execution process.

In Figure 6d, following the next request update message, the display updates to show the result of the third
action of the Generate event. The event graph edge directed from the Generate event to the Generate event
is colored red to indicate that a future Generate event is being scheduled and the new instance of the
Generate event is entered into the pending event list with a time increment of 8 time units. This display is
shown in Figure 6d and persists until the next request update message is issued. This action completes the
execution of the Generate event.
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Figure 6: Example event sequence.

On the third request update message, shown in Figure 6e, the Generate event is moved to the past event list
and shaded gray, and the nearest pending event, Arrive, is colored green to indicate that it is the current
event. Since this event was scheduled with a time increment of 0 time units, it has a time stamp of t = 2.
Because the server is busy, the Arrive event has only a single action, the update of state variables; no future
events are scheduled. The updated system model following the execution of the Arrive event is shown in
Figure 6f. The system state variable values now are Q(2) = 1 and B(2) = 1.



Collins, Gonda, Dumaliang, Leathrum, and Mielke

As shown in this simple example, the visualization tool clearly captures the sequence of event actions that
occur during the simulation of the model. At this increased level of resolution, it is much easier to observe
and understand the behavior of the simulation.

6 INITIAL RESULTS

The visualization tool is currently being fielded as an academic tool (spring 2017). It is being introduced in
an undergraduate discrete event simulation course using the Excel interface with spreadsheet simulations
and both graduate and undergraduate simulation software design courses using the C++ interface. This
presents the opportunity to assess the benefits of this extra layer of modeling in the learning process.
Testing the visualization tool with students learning about discrete event simulation will help assess the
benefit of using the tool to better acquire an understanding of event execution and scheduling. Some
important questions include:

e Are students able to analyze the system and explain characteristics of the event model?

e Are students able to solve different problems in simulation development through use of the visual-
ization?

e How does using the visualization tool compare to other methods for discrete event simulation, such
as hand simulation or debug output?

e How will students interpret or respond to the visualization?

Initial feedback has been gathered from the undergraduate simulation software design course on the use of
the interface. Note that it is early in the semester and these results are based solely on the students second
assignment. Students were assigned to develop a C++ simulation for the worker interference model exam-
ple presented as an event graph in Buss (1996). Students were provided Buss’s paper and the netlist for the
event graph to initialize the simulation, and required to develop software for the example and test their
implementation using the event graph visualizer. While a small sample size, feedback was very positive.
Students found it easy to interface their software with the tool. They also found the event graph visual very
informative, with the event list visual slightly less informative. They were somewhat less enthusiastic about
the console output, several not even taking advantage of this feature. It is believed that better instructions
and more practice will improve this result.

We also are beginning to work with faculty having expertise in educational assessment to properly construct
the test instruments and to more formally gather data and analyze the results.

7 FURTHER RESEARCH

Event graphs have two features not currently represented in the tool. The first is cancellation edges
introduced by Schruben (1983). Cancellation edges allow one event to cancel another event. Should
multiple events of the same type exist in the event list, Schruben presents a set of rules to identify the
appropriate event to cancel. The second feature is the ability to parameterize edges presented in Schruben
(1995). An edge is marked by an attribute which is passed to the scheduled event on execution. The
existing tool is capable of this feature by outputting the parameter to the console for each scheduling action.
On execution of the event, the parameter can again be displayed in the console. However, a more visual
approach will be considered.

The visualization tool currently supports communication with simulations created in Microsoft Excel or
using C++. These two environments were identified and integrated for their use in educating modeling and
simulation students. However, the tool is potentially useful for the development and debugging of
simulations. To this end, it is envisioned that the tool could integrate with existing simulation software tools
and that the scalability of the tool needs consideration. Integration with the simulation software, Arena,
has been identified as a near term goal. But fielding the tool for general use requires the tool to
accommodate much larger models than those typically utilized in an academic environment. The initial
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goal was to handle event graph examples found in the literature, of which the largest is found in Sargent
(1988) where he develops a flexible manufacturing model consisting of 14 events. However, an extensible
approach is desired. Schruben (1995) presents a hierarchical event graph approach where nodes in the
graph could represent a subgraph, but does not propose a visual approach. Future work will consider using
a format similar to Harel Statecharts (Harel, 1987), which are now common in the Unified Modeling
Language (UML), to provide a visual of a nested event graph. In addition, Buss (1996) discusses using
parameterized edges as an approach to representing complex models with simpler components, a capability
the current tool provides in an initial form using the console output.

Lastly, the importance of the event graph in the visualization tool matching the event model implemented
in the simulation has been noted. If the event graph is developed in the design process, and the simulation
is implemented to the specifications of the event graph, this process is straightforward. Support in mapping
standard model representations to event graphs would facilitate this process, such as the work found in
Schruben and Yucesan (1994). However, this is not always possible, especially in the case of utilizing
simulation tools or libraries where parts of the event model are hidden from the developer. For instance, it
may not be clear which of the event graphs from Figures 2 and 3 are implemented in a G/G/1 block used in
a simulation tool. Therefore, future research could include reverse engineering the event graph from an
existing simulation. This capability would provide great insight into the simulation implementation, mak-
ing the verification and validation process more transparent. This effort could involve a software analyzer
to statically derive the event graph from a software implementation. Alternately, an experimental process
could be developed to expose the underlying event behavior.
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