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ABSTRACT

Received signal strength indicator (RSSI) is often used in wireless localization applications as it attenuates
as the signal propagates through the environment. Signal strength attenuation models allow distance to be
estimated between transceivers and utilized in positioning techniques, such as trilateration and simultaneous
localization and mapping (SLAM) algorithms. To evaluate these methods, it is costly and time consuming
to construct hardware to physically test each implementation of an algorithm. However, simulating RSSI
can prove difficult due the many environmental factors that impact attenuation, such as multipath
interference. Simulating multipath effects require detailed information about the operating environment’s
properties (geometry, materials), and can be computationally expensive. This work describes a simulation
method which procedurally generates RSSI values at given distances for wireless nodes utilizing collected
data from a given environment type and a Markov chain. To demonstrate the effectiveness of this method,
a range-only SLAM algorithm is simulated utilizing this environment.

Keywords: Received Signal Strength Indictor (RSSI), Distance Estimation, Location Tracking,
Localization, Wireless Sensor Networks, Range-Only Simultaneous Localization and Mapping (SLAM),
Markov chain.

1 INTRODUCTION

Localization is a common application of wireless sensor networks and robotics. Many sensors are used for
estimating distances between devices, such as ultrasonic, LIDAR, and stereo vision (Lanzisera, Lin, and
Pister 2006; Ansari, Riihijarvi, and Hahonen 2007; Honkavirta et al. 2009; Awad, Frunzke, and Dressler
2007). However, utilizing existing hardware already present on the device keeps hardware expenses down
and saves space on footprint size. Wireless sensor networks can use the physical effects of wireless data
transmission to estimate distance, such as signal attenuation, angle-of-arrival, or time difference of arrival
of transmission. Angle-of-arrival and time difference of arrival techniques require specialized hardware,
directional antennas and highly accurate clocks, respectively, and are not practical on commonly available
wireless devices. Therefore, approaches which utilize signal strength decay are attractive to researchers. As
the signal propagates through the air, it attenuates as a function of the distance, allowing mathematical
models to exist which describe this process. This attenuation is expressed as the received signal strength
indicator (RSSI) which is in negative decibel milliwatts (-dBm). However, RSSI distance estimation is
difficult due the multipath effect. This occurs when a transmitting signal finds multiple paths to the receiver,
adding together to form an unexpected amplification or attenuation of the signal, depending on the phases
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of the multiple paths. This effect is illustrated in Figure 1. This is especially apparent in indoor
environments, where the multiple paths have similar signal strengths to the line-of-sight path. Models exist
for outdoor and long-distance multipath effects, where the number of reflected paths are minimal, and the
signal strength of the additional paths aren’t as prominent as the line-of-sight path.
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Figure 1: The effects of multipath on a received signal (CISCO 2016).

Despite the multipath effect, RSSI ranging techniques can still prove effective in indoor environments. One
of the more popular techniques is RSSI fingerprinting, where a signal strength map of an indoor
environment is created beforehand, and as a mobile node moves throughout the map, the changes in RSSI
are matched to determine the location. However, this technique requires extensive, tedious mapping prior
to use, and is highly sensitive to changes in the environment which would affect the radiation pattern or the
wireless transmitters. RSSI ranging can still be used in trilateration and simultaneous localization and
mapping algorithms, however, some pre-filtering techniques are often required.

2  RADIO-PROPAGATION MODELS

Multiple models exist to describe the signal attenuation over distance. Presented here are two of the most
common models.

2.1 Free Space Propagation Model

The free space propagation model describes the loss of signal-strength over distance in an open environment
with line of sight between transmitters and antennae with omnidirectional radiation patterns. The received
signal power, P,, is expressed at distance, d, in meters as:

PGy Gy A*

(4nd)?L

Where P; is the transmitter’s signal power, G; and G, are the transmitter and the receiver antennae gain in
dB, respectively, L is the system loss, and 4 is the wavelength in meters. The system loss doesn’t relate to
the transmission itself, but rather the environment in which it is operating. Usually a value of 1 can be
applied to L (Xu et al. 2010; Elango, Mathivanan, and Pankaj 2011).

F.(d) =

2.2 Log-Distance Path Loss Model

The log-distance path loss model is a general propagation model. It can be used in both indoor and outdoor
environments. The log-distance path loss model provides a logarithmic attenuation model which has several
parameters that can be tuned to make it fit nearly any environment (Xu et al. 2010). The RSSI (in dBm) for
this model is expressed as:
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Where n is the path-loss exponent, d is the transmission distance in meters, and A4 is the reference value,
which is the RSSI at 1 meter away from the transmitter. This equation can be rearranged to be expressed in
as distance for a given RSSI value:

RSSI-A

d= 10 1on

The path loss exponent, n, can be calculated for each environment by recording RSSI values at known
distances and reverse solving for n. Typical values for n can be observed in Table I (Elango, Mathivanan,
and Pankaj 2011, Mehra and Singh 2011).

Table 1. Sample path-loss exponent values for various environments.

Environment Path-Loss
Exponent (n)
Free Space 2.0
Urban Area Cellular Radio 2.7~3.5
In-Building LOS 1.6~1.8
Shadowed Urban Area 3~5
Cellular Radio

The log-distance path loss model is the most versatile, as it can be configured for each environment and
uses a reference value rather than requiring the transmission power and gain for each transmitter and
receiver.

3 THE SIMULATION ENVIRONMENT

Implementing an entire sensor network to test localization algorithms can be costly and time consuming.
Therefore, it is practical to simulate a testing environment prior to implementation. However, simulation of
RSSI can be unreliable due to over-idealized signal strength data, which doesn’t accurately portray the
multipath effect, or it can computationally expensive from ray-tracing techniques and geometrically
complex environments. Here we present a simulation technique which accurately portrays the RSSI signal
behavior within an environment of interest, given the application is only concerned with signal behavior
and not the geometry of the environment. This simulation technique involves training a discrete Markov
chain to generate RSSI data over distance, utilizing actual collected RSSI data in the environment of
interest. This generated data contains RSSI over distance vectors, which are then assigned to a specified
number of rays emitting from the node’s location. This forms a discretized radiation pattern for each node
which serves as a lookup table given a certain distance and angle from the node. All figures and simulations
presented in this work are generated using MATLAB 2016B.

3.1 Collection of RSSI Data

To generate RSSI data from the Markov chain, real RSSI-distance data must be collected. For the examples
shown in this work, data was collected within the Energy Production and Infrastructure Center (EPIC)
building on the campus of the University of North Carolina at Charlotte. Data was collected in various
environment types, including large classrooms, hallways, and laboratories. An outdoor data set was also
collected for a set with minimal multipath interference. This data was collected using XBee 802.15.4 radios
and Digi 2.4 GHz Omnidirectional Dipole antennas with a 2.1 dBi Gain. The XBee radios were configured
with boost mode disabled and power level set to 2 (1 dBm Gain). Each XBee module was interfaced with
an Arduino Uno; one module being set to transmit, and the other configured to return the RSSI value of the
received packet. Each node was placed on a 1 meter tall stalk and moved away from the transmitter at 0.25
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meter increments up to 10 meters. At each increment, 5 readings where taken at 90 degree increments for
a full rotation. Despite the antennas being omni-directional the radiation pattern is not perfectly symmetrical
and the rotations attempt at capturing those variations. This data was recorded and placed within a
spreadsheet. The simulation would then later use these spreadsheets to train the Markov chain. Figure 2
depicts an example of the collected RSSI-distance data.
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Figure 2: Collected RSSI data over distance in a hallway of UNC Charlotte’s EPIC Building. The blue
line represents the average RSSI value collected at each distance increment, and the green line is the
calibrated log-distance model for this data.

3.2 The Markov Chain

Markov chains are procedural algorithms which determine the next state of a random variable from the
current state. Each state has a probability associated with it to transition to a new state on the next iteration.
(Bishop 2006)

For this simulation, each combination of discrete RSSI value and distance value is modelled as a state. Each
state has some probability of transitioning to a state 1 distance increment higher than the current state (0.25
m in this example, because each RSSI measurement was taken at 0.25 meter increments. The probability
of transitioning to any state with a distance lower than the current state or higher than 1 increment of the
current state is 0. The probability of transitioning to the next state one distance increment higher is
determined by how often a new RSSI value is observed after the RSSI value of the current state. Following
the Markov chain from distance = 0.25 and a randomly selected initial RSSI value from the set of RSSI
values at 0.25 meters, the chain generates an RSSI-distance data set that contains the multipath
characteristics of the environment from which it was collected. Figure 3 graphically depicts the Markov
chain sequence. This data is utilized as an RSSI look-up table for a certain distance from the transmitter.
The limitation of this method is the maximum distance that can be accurately simulated is dependent on the
maximum distance from the source data collected in the actual environment. Figure 4 depicts an RSSI vs.
distance graph generated by a trained Markov chain.
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Figure 3: Example of RSSI-Distance Markov chain at state, “distance = 0.15, RSSI = 35”. Each state is
defined by a discrete RSSI/distance combination. The arrows and numbers indicate the probability of
transitioning into the next state. As illustrated here, only states one distance increment above the current
state have some probability of transitioning to. The size of the distance increment is determined by the
resolution of the collected RSSI over distance data. The probability of transitioning is calculated based on
how often an RSSI value was observed on the next distance increment during the data collection process.
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Figure 4: Simulated RSSI data over distance produced by a Markov chain trained on collected data from
hallways. Notice the multipath similarities to the measured data collected in Figure 2. The blue line

represents the average RSSI value collected at each distance increment, and the green line is the calibrated
log-distance model for this data.
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3.3 Determining RSSI Values

Within the simulation environment each node is assigned a certain number of rays where each ray is
composed of a Markov-generated RSSI-distance vector. Given a receiver node is a certain position, distance
and orientation, away from the node the RSSI value is determined based on distance from the node and the

distance to the nearest rays using a bilinear interpolation method. Figure 5 depicts the ray configuration for
a node generated with 8 rays.
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Figure 5: A Markov generated node with 8 rays. Each ray, r,, corresponds to a generated RSSI-distance
vector at an associated angle, 6.

The following equation describes the RSSI-value assignment given a non-integer valued (x,y) position
relative to the node:

dz d di—d
1 1
d, —d d,—d

RSSI(8;,d) =~ 2 — RSSI (02,d1)+ — RSS1u(6,dy)
1 1

0, —0 0, — 0
RSSI(6,d) = 92_ RSSI(6,,d) + 91 RSSI(6,,d)

2~ U1 2~ 01

Where 6 and d represent the angle and distance of the receiver node with respect to the transmitter node,
and the sub-indexes of these variables represent the nearest discrete indexes generated by the Markov chain.
The RSSI, function serves as a lookup table function for specified indexes. Depending on the number of
rays specified, each ray has an angle value, 6, associated with it. Figure 6 graphically illustrates the bilinear
interpolation process (MathWorks 2017).

Using this equation to determine the RSSI value, Figure 7 displays radiation patterns for nodes generated
with Markov chains trained on various environment types.
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Figure 6: An Illustration of the bilinear interpolation process. The position of the node fuses two RSSI
values from rays r; and 2, which are the weighted average between two RSSI readings from each ray
based on distance. The two RSSI reading are averaged again based on weights determined from distances
to each angle, 6; and 6..
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Figure 7: Simulated radiation patterns from Markov chains trained on various environment data. Both
figures have a node placed in the center of the graph, at (4,4) and the intensities along the z axis indicate
the signal attenuation. The graph in (A) was trained on data collected in an outdoor environment, where
the multipath interference was minimal, while the graph in (B) was trained on hallway data, which has
very intense multipath fading effects.

4 SIMULATION OF RANGE-ONLY RSSI SLAM

To test the simulation method a range-only RSSI SLAM algorithm was implemented. This algorithm tracks
the position and orientation of a mobile robot equipped with a wireless transceiver and the position of
wireless nodes which act as landmarks for the correcting odometry errors from the robot by determining
distance to each node. The algorithm uses an extended Kalman filter at its core to combine the odometry
reading with distance estimations from the wireless nodes.
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4.1 The Simulation Configuration

Before utilizing the simulated nodes an operating environment must be defined. Here, a robot is defined at
a given position and given a pre-defined path to follow. Wireless nodes are randomly scattered within the
environment at a user-specified amount. At each iteration of the simulation the robot takes a linear and
rotational motion defined by the path vector. The difference between each motion is perturbed by a
Gaussian noise and collected as odometric sensor data. RSSI values are then collected from each node, and
passed to a pre-filtering phase to help reduce the multipath effect.

4.2 RSSI Pre-filtering

To reduce the multipath effect a pre-filtering method similar to the work described by Menegatti et al. was
implemented. This method utilizes the linear displacement of the robot’s odometry to generate an estimated
RSSI value and combines that with the measured RSSI value to a particular node. If a robot moves some
distance between RSSI measurements, the RSSI value cannot undergo an extreme change relative to the
change in distance. Given the motion vector of the robot is relative the frame of the world or map, it is not
known relative the node’s position, however; the extreme cases can be considered. If a robot were to move
0.5 meters between readings the maximum expected reading would be the RSSI value associated with a 0.5
meter increase in distance and the minimum would be the RSSI value associated with a 0.5 meter decrease.
Given a newly measured RSSI value and a displacement vector from odometery the filtered RSSI value is
as follows:

RSSI, =10*n xlog(d +tu) + A
RSSI, + RSSI,

RSSI, = >
RSSIp—A
dr =10 1on

Where RSSI. is the expected RSSI at a given distance, d, plus or minus the displacement, u. If the change
in RSSI is positive, the change is added, and if the change is negative, the change is subtracted. RSSI, is the
predicted RSSI value found by averaging the expected RSSI with the measured RSSI. The filtered distance,
dy, is found by re-arranging the log-distance model and applying the predicted RSSI value. The filtered
distance value behaves as a low-pass filter for RSSI values (Menegatti et al. 2009).

4.3 Range-Only SLAM Algorithm

The range-only SLAM algorithm utilizes estimated distances to landmarks to correct accrued odometric
values. The algorithm presented here uses an extended Kalman filter to estimate the state of the system,
that includes the pose of the robot and the coordinates of the wireless nodes, which serve as the landmarks
for the system. The state vector, x, contains the following:

X = [xr yr 97‘ xl yl xTL yn]T

Where x,, yr, and 0, denote the pose of the robot, and x;, y; through x,, y» denote the positions of the nodes,
up to n number of nodes (Menegatti et al. 2009).

The odometry data from the robot’s motion is added to the filter as a control vector, u:
u=[AD A0]"

Where 4D is the linear displacement of the robot, and 40 is the rotational displacement of the robot between
iterations.

The state transition function is a non-linear function, f(x,u), which contains the system dynamics to predict
the next state based on control vector input:
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(%, + AD * cos(6, + AO)T
¥, + AD * sin(0, + AB)
6, + A6
fxg—q,u) = 1 = Xk
M1
Yo
le

Where k - 1 indicates the value of the last filter iteration, and & indicates the current state prediction. In
order for the extended Kalman filter to update the covariance matrix, a linearized model of the system must
be acquired. Hence, the Jacobian of f'is taken, yielding the following:

1 0 —AD=*sin(6,) 0 0
[0 1 AD=xcos(6,) 0 0]
F= | 0 0 1 P |
P : KU
lo 0 0 0 1J
The observation function, h, is another non-linear function that transforms the state variables into the form
of the measurement vector, z. The measurement vector contains the estimated distance value from the pre-

filtering stage for the node/landmark currently being observed. Therefore, the h function must take acquire
the distance between the robot’s position and observed node.

h(x) = G = x)* + (r = 7)?

Where i indicates the index of the observed node. For the filter to update the covariance’s of the
measurement phase the linearized form of h must be obtained as well, giving the following Jacobian:

Xr — Xj Yr — Vi
B \/(xr - xi)z + (yr - Yi)z \/(xr - xi)z + (yr - yi)z

H

These defined functions, Jacobians, and vectors, the extended Kalman filter is detailed in Algorithm 1.

Extended Kalman Filter(xy_q, Pr—1, Uk, Zk)

Prediction Phase:

Xk = f(xg—1,Uk)
Py = FyPy_1Fj + Qy

Measurement Phase:

Vi = Zi — h(xg, ug)
Sk = H P HL + Ry,
K, = P HLS;!

X1 = X + Ky
Py = (I — K Hy )Py
return X 41, Pryq

Algorrithm 1: Extended Kalman Filter. (Thrun, Burgard, and Fox 2005)
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4.4 Simulation Results

The range-only SLAM algorithm presented above was implemented within the MATLAB simulation with
near-true initial values. As the linearization of the EKF makes the state estimates susceptible to falling into
local minima, the algorithm only performs reliably when state variables are initialized near their true values.
(Menegatti et al. 2009) The robot traverses a pre-defined rectangular path three times and wireless
node/landmarks are randomly placed throughout the environment. Figure 8 shows the results of this
algorithm.

The simulation results are similar to what would be expected to be observed employing this type of
localization algorithm within a highly reflective indoor environment, in which the nodes’ radiation patterns
where trained. The average localization error for the robot’s position after multiple simulations within a
highly reflective environment was ~ 0.75 meters and node locations where ~ 0.5 meters.
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Figure 8: Range-only EKF SLAM simulation using wireless nodes as landmarks. Graph (A) shows the
true path of the robot in black, and the estimated path from the filter in red. The robot’s final estimated
position is indicated by the black ‘x’. The blue circles are the randomly assigned node locations, and the
magenta ‘X’s are the estimated positions of the nodes. All units are in meters. Graph (B) shows the error
of the estimated robot position throughout its trajectory.

S CONCLUSION

This work presents a procedurally generated simulation environment which generates RSSI values within
a certain environment type based on a trained Markov chain for testing RSSI-based localization algorithms.
While realistically simulating multipath effects on a wireless signal requires gratuitous amounts of
processing and detailed information about the environment, such as geometry and material properties and
their effects on radio waves, the method presented here statistically generates multipath interference on an
RSSI signal over distance which well models the interference effects observed in the actual environment.
Localization algorithms which do not utilize environment geometry can be tested using this simulation
method without the concern of providing over-idealized RSSI data. The range-only SLAM algorithm
performs as expected given the technique and environment type.
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