We present a framework for adaptive optimization of high-order curved meshes. The optimization process is driven by information that is provided by the simulation in which the optimized mesh is being used [1]. We make the important choice to require only discrete description of the simulation feature to which to adapt to, e.g., the feature can be described as a finite element function on the mesh. This is a critical step for the practical applicability of the algorithms we propose and distinguishes us from approaches that require analytical information.

The discrete problem is formulated as a variational minimization of a chosen mesh-quality metric, utilizing a finite element extension to the Target-Matrix Optimization Paradigm [2]. The method primarily relies on node movement (r-adaptivity), but also has the capability to perform h-adaptivity steps when this can produce to the desired local mesh size [3]. We will also discuss our latest capabilities for surface fitting and tangential relaxation, which are enforced weakly by adding penalty terms in the objective [4]. These penalty terms connect the concept of mesh motion to the discrete finite element function that defines the desired node position.

Performed under the auspices of the U.S. Department of Energy under Contract DE-AC52-07NA27344 (LLNL-ABS-829090)

REFERENCES


