SIMULATING A SMALL MODULAR MOLTEN SALT REACTOR

L3 MAPPS Inc. | Power Systems and Simulation

11 January 2022

Michael H. Chatlani - VP, Business Development
Outline

• Introduction
• Simulation Technology Updates and Configuring Molten Salt Reactor (MSR) Plant Model
• Current Status
• Wrap-up
SMRs → Focus on Molten Salt Reactor Design, Simulation Assisted Engineering
Introduction

• Small Modular Reactors (SMRs)
 – Nuclear reactors with power between 10 MWe and 300 MWe
 – Less than 10 MWe often called Micro Modular Reactors (MMRs)
 – Often integral and modular, designed for factory fabrication
 – Numerous designs emerging
 – Water Cooled (Land Based and Marine Based)
 – High Temperature Gas Cooled
 – Fast Neutron Spectrum
 – Molten Salt
 – MMRs
 – Global market size: $150B between 2025 and 2040 [Pillsbury]

• Canada: a frontrunner
 – Canadian Nuclear Safety Commission conducting Pre-Licensing Vendor Design Reviews (VDR)
 – 10 different designs ranging from 3 MWe to 300 MWe
 – 2 more VDR agreements under development
 – Ontario Power Generation working with GEH to introduce grid-scale SMR
 – Global First Power developing MMR demonstration plant

• Simulation for training but – more importantly today's context – for initial design & verification support/testing – Simulation Assisted Engineering

TERRESTRIAL ENERGY

IMSR®: Integral Molten Salt Reactor

• Announced L3Harris-Terrestrial Energy agreement on 30 September 2020
 • “This partnership will help Canada to advance domestic small modular reactor technology, while creating good jobs as the country moves towards generating energy with fewer carbon emissions.” – The Honourable Navdeep Bains, Minister of Innovation, Science and Industry, Government of Canada
IMSR Synopsis

• 195 MW core-unit scaled into a 2-unit 390 MW power plant
• Generation IV design
• Uranium fluoride salt fuel is Standard Low Enriched Uranium (LEU <5% enrichment)
• High temperature secondary side
• Reactor vessel core-unit has a 7-year life
• Designed for 56-year operational life; high level waste is stored in-plant throughout plant life and beyond if necessary
• Potential load-follower to support variable renewables
• Thermally very stable – permits IMSR to operate at both high temperature and lower pressure
 – 700°C high temperature operation achieves greater than 44 percent thermal efficiency for electric power generation
 – Low-pressure operation avoids considerable engineering complexity and costs
• Transformative potential commercial results from combination of high-temperature and low-pressure operation, inherent and passive safety, smaller size, and modularity of IMSR power plant design → Upfront investment < US$1B
 – Electric power markets: LCOE < US$50 per MWh
 – Industrial heat markets: In-furnace cost of heat < US$6 per MMBtu
• Terrestrial Energy headquartered in Oakville, Ontario, Canada
Process Simulation Context

• Operating Plant → Examples: CANDU, PWR, BWR, AGR

Well Established Plant Data → Straightforward → Operator Training Simulator

• Plant Being Designed → Today’s Example: IMSR

Evolving New Plant Design → Challenging → Simulation Assisted Engineering (SAE)
Simulation Assisted Engineering

• Terrestrial Energy and L3Harris going beyond operator training to use simulators to aid in NPP design, procedure development, design verification and Human Factors Engineering (HFE)

• Capitalize on integrated, cross-discipline simulation to provide common simulation environment for collaboration

• End goal of shortening the time for:
 1. NPP design and development
 2. Verification and Validation
 3. Operator Training

• Continued use of L3Harris’ Orchid® technology and IMSR simulation to test/benchmark design changes and incorporate plant control systems

• Simulator integrated as part of comprehensive HFE Program

• Plans to recruit operators in 2023, start training in 2024 – operators needed for plant commissioning

source: Terrestrial Energy presentation at L3Harris Owners Circle™ Conference (5-6 October 2021)

Elements of IMSR400 HFE Program

<table>
<thead>
<tr>
<th>Planning and Analysis</th>
<th>Design</th>
<th>Verification and Validation</th>
<th>Implementation and Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>HFE Program Management</td>
<td>Human-System Interface Design</td>
<td>HF Verification and Validation</td>
<td>Design Implementation</td>
</tr>
<tr>
<td>Operating Experience Review</td>
<td>Procedure Development</td>
<td></td>
<td>Human Performance Monitoring</td>
</tr>
<tr>
<td>Function Analysis & Allocation</td>
<td>Training Program Development</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task Analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staffing & Qualification</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment of Important Human Actions/Human Reliability</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Plant Modeling with Orchid® Simulation Environment

- Whole, integrated power plant modeled with only two software tools – results in fully integrated, high-fidelity, real-time power plant model for SAE and OTS
- **Orchid® Core Builder** Visual Core Model Development → ***Comet Plus™**: full 3-dimensional, 2 energy group, neutronics model using Nodal Expansion Method; design and offline calculations
- **Orchid® Modeling Environment** Graphical Drag-Drop-Connect → ***Non-homogenous, 2-phase models a.k.a. ANTHEM™ (SGs, Cooling Systems), Room models (Containment, Reactor Buildings), ***Homogeneous, 2-phase models (Primary Auxiliaries, BOP), Electrical and I&C models, runtime Comet Plus™ in Orchid® Modeling Environment and interfaces to external systems
- Intuitive, graphical development, test and runtime capabilities with built-in configuration management – L3Harris and end-users interface with simulated plant through graphical user interface – great for rapid prototyping as well

Today’s Focus
SIMULATION TECHNOLOGY UPDATES
AND CONFIGURING MOLTEN SALT
REACTOR PLANT MODEL

Project Scope, Configuring Plant Model and
Simulation Technology Impacts
IMSR Flow Diagram (Simplified) / Model Implementation

Non-homogenous, 2-phase model (ANTHEM™)

Homogeneous, 2-phase model

Image source: Terrestrial Energy
IMSR SAE Project Scope

• Configuration 1
 – ANTHEM™ Thermal-Hydraulic (TH) Model: Reactor vessel (Core-unit), Guard Vessel - including ANTHEM™ update for Steam Generators and Liquid Salts (Fuel Salt, Secondary Coolant Salt & Solar Salt)
 – Point Kinetics (PK) reactor model to interface with ANTHEM™ TH model

• Configuration 2
 – Configuration 1 + BOP model to provide dynamic boundary conditions to IMSR SGs
 – Emergency Heat Removal System (EHRS)

• Configuration 3
 – Configuration 2 + Comet Plus™ multi-nodal neutronics model (replaces PK model) to interface with ANTHEM™ TH model

• Orchid® Technology and Training
Inputs Required to Update Technology and Configure Plant Model

L3Harris Foundational Technology Updates
- Additional Delayed Neutron groups (Comet Plus™)
- Update of Neutron Scattering (Comet Plus™)
- Liquid (Moving) Fuel (Comet Plus™ and ANTHEM™)
- Liquid Phase to include salts (not only water) (ANTHEM™)
- Incorporate Salt Properties (ANTHEM™)
- Additional heat transfer and friction correlations (ANTHEM™)

Geometric Data
- Detailed construction drawings (includes dimensions, lengths, widths, thickness and diameters, etc.)
- Elevations (relative and absolute) of the components relative to each other
- P&ID and/or Isometrics
- Heat Exchangers dimensions (Number of tubes, diameters, areas of exchange, etc.)
- Any special components that could affect the geometry such as orifices, nozzles, baffles etc.

Operational Conditions
- Pressures, Temperatures, Flows
- Heat and Mass Balance
- Pumps Dynamic Heads, Flow Rates and Speed
- Heat Exchanger Heat Load
- Reactor Thermal Power
Reactor Design and Orchid® Core Builder Updates

- **IMSR involves**
 - Fuel within fluoride coolant salt moving inside vessel
 - Integral reactor core with graphite moderator
 - Neutrons mainly in thermal spectrum

- **Raised questions**
 - What is impact of having non-static Uranium in core model?
 - How do we deal with Decay Heat products and Delayed Neutrons if they are moving in core?
 - Are 6 groups of Delayed Neutrons sufficient for this type of core?
 - Are two Neutron Energy groups sufficient to model this type of core?
 - What core nodalization is required?

- **Serpent-2** (Monte Carlo reactor burnup physics calculation code) and DRAGON5 (lattice code) used to produce required data processed by Orchid® Core Builder
 - Reference Data
 - Perturbation Data
 - Validation Data

- **Orchid® Core Builder Updates**
 - Orchid® Core Builder updated to read and process data from Serpent-2 and DRAGON5
 - Data set already homogenized into two energy groups
 - Preliminary results revealed L3Harris Comet Plus™ needed to include Upscattering (thermal neutrons going back to fast energy spectrum)
 - Addition of 2 more Delayed Neutron groups needed
 - Nodalization information not available from design codes → Orchid® Core Builder updated to easily read user-defined nodalization
Liquid (Moving) Fuel Model Implementation

- Modeling Liquid (moving) fuel for IMSR instead of Solid Fuels modeled for Conventional NPPs required re-evaluation of reactor and TH model implementation and interfaces
- Certain calculations (code) handled by Comet Plus™ transferred to ANTHEM™ to accommodate fuel movement

<table>
<thead>
<tr>
<th>Modeling Implementation/Interfaces for PWRs (Typ.)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Comet Plus™ Calculations</td>
<td>ANTHEM™ Calculations</td>
</tr>
<tr>
<td>Flux</td>
<td>Moderator Density</td>
</tr>
<tr>
<td>Fission Heat</td>
<td>Fuel Temperature</td>
</tr>
<tr>
<td>Decay Heat</td>
<td>Boron Concentration</td>
</tr>
<tr>
<td>Xenon / Iodine Concentrations</td>
<td></td>
</tr>
<tr>
<td>Delayed Neutrons</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modeling Implementation/Interfaces for IMSR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Comet Plus™ Calculations</td>
<td>ANTHEM™ Calculations</td>
</tr>
<tr>
<td>Flux</td>
<td>Graphite Temperature</td>
</tr>
<tr>
<td>Fission Heat</td>
<td>Fuel Salt Temperature, Density</td>
</tr>
<tr>
<td>Decay Heat</td>
<td></td>
</tr>
<tr>
<td>Xenon / Iodine Concentrations</td>
<td>Delayed Neutrons</td>
</tr>
</tbody>
</table>
Incorporating Liquid Salts in ANTHEM™

ANTHEM™ components for Conventional Reactors

<table>
<thead>
<tr>
<th>Vapor Phase (VP)</th>
<th>Liquid Phase (LQ)</th>
<th>Water properties calculated from steam tables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Vapor</td>
<td>Liquid Water</td>
<td>Non-Condensables properties come from well-defined correlations</td>
</tr>
<tr>
<td>Non-Condensables (N2, O2, H2, CO2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Liquid Salts incorporated in ANTHEM™ for IMSR

<table>
<thead>
<tr>
<th>Vapor Phase (VP)</th>
<th>Liquid Phase (LQ)</th>
<th>Liquid can be water and/or molten salts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Vapor</td>
<td>Liquid Water</td>
<td>Salt properties come from different experimental correlations</td>
</tr>
<tr>
<td>Non-Condensables (N2, O2, H2, CO2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquid Salts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel Salt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary Coolant Salt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solar Salt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emergency Coolant Salt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Molten Salt properties made available from experimental results

- Salt data/correlations considered for ANTHEM™ update: Salt Composition, Thermal Conductivity, Viscosity, Specific Heat, Density
Heat Exchangers and ANTHEM™ Updates

- Heat exchangers (PHX, SHX, EHX, SG, RH) differ from Conventional NPP Steam Generators modeled
 - Additional heat transfer and friction correlations added to ANTHEM™
 (e.g. cross flow outside tubes)
 - Improved non-condensable modeling for heat transfer applications
 (e.g. below 0 °C conditions)

Image source: TEMA
CURRENT STATUS

Work Performed to Date, Results
IMSR Simulation Work Performed to Date

- Started work on IMSR development with goal to
 - Update Orchid® Core Builder and core model
 - Adapt and update ANTHEM™ objects and code to use molten salt
 - Develop and integrate IMSR simulation models
- With data and assistance from Terrestrial Energy, Orchid®-based IMSR simulation created

- **Orchid® Core Builder**
 - Orchid® Core Builder reads Serpent-2/DRAGON5 data to generate inputs for Comet Plus™

- **Orchid® Modeling Environment (ANTHEM™)**
 - Reactor Vessel with risers, PHX and downcomers
 - Fuel Salt Loops including Guard Vessel
 - Coolant Salt Loops with PHX and SHX
 - Solar Salt Loops with SHX, Super-Heater, Evaporator, Preheater and Reheater
 - Steam Generators with separate vessels (Preheater / Evaporator / Superheater) and Reheaters
 - EHRS including Emergency Heat Removal Loops with EHX

- **Orchid® Modeling Environment (Homogeneous, 2-phase)**
 - Balance of Plant model including Steam, Turbine, Generator and Feedwater
IMSR Simulation Work Performed to Date

- IMSR Simulation
 - Establishes heat transfer between loops and performs flow and pressure calculations
 - Replicates heat balance (from THERMOFLEX heat balance software)
 - Includes new heat transfer and friction correlations
 - Uses controller emulators to replicate Terrestrial Energy’s control philosophy
 - Integrates real-time Comet Plus™ and ANTHEM™ models
 - Compared L3Harris simulation results with Terrestrial Energy’s original (non-real-time) Flownex simulation environment results
Configuration 3 Model Results

- Orchid® Core Builder used to run static (offline) flux solution based on neutronic source data from Serpent-2/DRAGON5 and determined core nodalization
- Adjustments needed/implemented e.g. improved nodalization, upscattering → greatly improved result
- Finalized implementation of real-time, multi-nodal Comet Plus™ neutronics model and integration with ANTHEM™

- For comparison with Flownex simulation, L3Harris’ Orchid®-based simulation was run with
 – ANTHEM™ Salt Circuits and Steam Generators
 – Homogenous, 2-phase Hydraulic BOP systems
 – Comet Plus™ neutronics model
 – Control emulators
- Differences between the Flownex and Orchid® simulations
 – Control logic in simulations at different maturity levels and not same (control design work ongoing)
 – Solar Salt / Steam Generators configuration is different (L3Harris model to be updated with final SG design)
WRAP-UP

SMRs, IMSR, SAE, Plans
Closing Observations

- IMSR reactor core, salt circuits, steam generators and BOP modeled and integrated
- Multiple configurations delivered to Terrestrial Energy for SAE
- Orchid® simulation delivering strong results
- Going forward: Continued use of Orchid® technology and IMSR simulation to test/verify design changes and incorporate/validate plant control systems

- High expectations for penetration of SMRs in market to effectively combat Climate Change
- Pleased to collaborate with Terrestrial Energy on transformative IMSR design
- Simulation to support evaluation of new plant design (Simulation Assisted Engineering) will form basis for Operator Training Simulators
- Simulation technology (Orchid®) updates were needed to accommodate MSR properties

Image source: Terrestrial Energy
Closing Observations

TRADE RELEASE

L3HARRIS RECOGNIZED FOR INNOVATIVE MOLTEN SALT REACTOR SIMULATOR

Highlights:

• Receives 2021 Organization of Canadian Nuclear Industries’ Innovation Award
• Delivered first-of-a-kind small modular reactor (SMR) simulator to Terrestrial Energy
• Provides Canadian technology that simulates innovative liquid nuclear fuel and molten salts

• 25 November 2021: L3Harris work on IMSR simulation results in OCNI Innovation Award