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ABSTRACT

The fUML allows creating models by using a subset of UML diagram elements. This approach has the
benefit of keeping the execution engine simple, but it is sometimes limiting, as it does not permit to specify
certain advanced constructs such as loops in a concise way. This paper shows and discusses some of these
constructs and introduces additional component specifications or modifications to existing ones to reduce the
number of elements needed to realize a model. The methodology consists in enriching an existing execution
engine for C++ by specifying additional UML items that do not belong to the fUML subset. The execution
engine allows the execution of diagrams that model complex structures with less overhead leading to models
which are easier to realize and maintain. Moreover, the model-driven execution engine allows supporting
those additional elements without impairing the reached level of conformance.

Keywords: fuml, uml, execution engine.

1 INTRODUCTION

The fUML, defined by the Object Modeling Group (OMG), permits the creation of executable UML mod-
els for a restricted subset of UML activity and class diagram elements by providing for them a precise
execution management (OMG 2016). The execution is based on a predefined execution model, which is
computationally complete for the subset, and a Java execution engine that is specified and available as a ref-
erence implementation. This approach can be used to simulate UML-specified models and has the benefit
of keeping the execution engine small and simple. However, it is limiting from the point of view of a mod-
eler (Ellner et al. 2011), as it does not allow several aspects of the used UML diagrams. If such constructs
are needed, they may be emulated by complex submodels as a workaround, but this leads to less compact
and straightforward models which are then harder to read and understand.

This paper reviews some “forbidden” constructs and proposes ways to specify them in a simpler manner
compared to workarounds, while still keeping the resulting fUML models fully executable. This is done
by introducing additional constraints, extensions to existing components, and the use of additional UML
elements to reduce the total number of components needed.
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This work has been motivated by the model-based specification of executable models for optimization
heuristics, when necessary control structures were hard to specify with the set of available elements (Wich-
mann et al. 2016). The methodology consists in enriching an existing execution engine for C++ and a
model generation process realized with the Eclipse component Acceleo by specifying additional UML ele-
ments that do not belong to the fUML subset.

Most of the proposed elements have been implemented in the execution engine, which now allows the
execution of diagrams that model complex structures with less overhead. This allows having models which
are easier to realize and maintain. Moreover, it is leading to a reduced amount of generated components
and better code structure. Hence, the computational effort as well as the size of the executable elements
decreases, thus accelerating a subsequent model simulation. As the C++ execution engine is itself realized in
a model-driven manner, it supports the additional elements in a modular way without impairing the achieved
fUML conformance level.

The aim of this paper is to define a complementary simplified notation for certain fUML elements and to
extend an existing C++ execution engine to support additional items that were excluded from the fUML
specification.

This paper is structured as follows. Section 2 shows the constructs that are currently difficult to realize in
fUML in a simple manner and proposes a possible way of realizing them in an easier manner. Section 3
briefly shows how the elements have been added to the execution engine and the results of their validation.
Finally, Section 4 discusses the results of this paper and suggests future improvements.

2 FLAWS OF FUML AND POSSIBLE SOLUTIONS

The fUML was originally specified and made first available in February 2011 by selecting a subset of UML
elements that led to a computationally complete visual language able to describe the execution of UML’s
activity diagrams in a precise formal manner. However, sometimes this subset is quite limited and makes it
difficult to implement certain common structures, such as loops, in a concise way.

FUML, as an executable subset of UML, was meant to prevent over-specification inside UML dia-
grams (Rumpe 2014), preventing the creation of extremely detailed UML diagrams to show or express
the executability of the system.

This goal has been partly reached, but fUML diagrams are currently not as scalable as many components
are needed to realize simple actions. Another problem for fUML modelers is the lack of a custom-made
fUML modeling environment that allows creating models that only comply with the fUML specification
and allowing to specify the element behaviors easily. These flaws make fUML diagrams good in theory,
but difficult to be used and applied in an industrial environment or real-life scenarios, where other kinds of
proprietary models are thus applied more often (Baker, Loh, and Weil 2005).

For example, it would be practical to have UML’s Data Store nodes defined in the fUML’s specification, to
have an element that allows to specify an infinite loop on the same object by storing and sending an object
token. All redundant object flows and merge nodes needed to implement an equivalent model could then be
avoided, resulting in a simpler and clearer model.

The existing literature shows the fUML’s limits and shortcomings. For example, other extensions to the
standardized fUML virtual machine have already been proposed in (Mayerhofer et al. 2012). Similarly,
other authors find the graphical realization of fUML diagrams for certain scenarios to be tedious (Lazăr,
Motogna, and Pârv 2010). The following subsections cover some of these flaws and propose solutions.
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f o r ( i n t j = 0 ; j < t o k e n s . s i z e ( ) ; j ++) {
Token t o k e n = t o k e n s . g e t V a l u e ( j ) ;
Value v a l u e = ( ( Objec tToken ) t o k e n ) . v a l u e ;
i f ( v a l u e != n u l l ) {

p a r a m e t e r V a l u e . v a l u e s . addValue ( v a l u e ) ;
}

}

Figure 1: The Java code snippet shows how the fUML specification defines the collection of the objects
token from the activity parameter nodes at the end of the execution of an activity.

Token

+remainingOffersCount : int
+baseTokenIsWithdrawn : boolean

ForkedToken ObjectToken

+baseToken

0..*

Figure 2: A UML class diagram showing the relation between a ForkedToken and an ObjectToken. As it can
be seen they are not directly related and therefore a cast of a ForkedToken to an ObjectToken is not possible.

2.1 Forked Tokens as Activity Outputs

During the process of developing the C++ execution engine, it has been noticed that the fUML specification
does not allow forked tokens to be consumed by activity parameter output nodes. As the code listing from
the fUML specification shown in Figure 1 (OMG 2016) shows, the value of the token is retrieved by casting
the token to an ObjectToken and accessing its value property afterwards.

Unfortunately, as shown in the class diagram in Figure 2, ForkedTokens and ObjectTokens cannot
be cast one to the other, as they are not in an inheritance relationship. They are both Tokens, but it is
not possible to retrieve an object instance from a ForkedToken in the same way as it is retrieved from an
ObjectToken.

To access the instance that is pointed to by the ForkedToken, the code shown in Figure 3 should be used. It
is necessary to check if the given token is a ObjectToken, and then directly getting its value, or whether it is
a ForkedToken, in which case the value has to be retrieved through the baseToken attribute.

Our execution engine now allows to correctly terminate activities by providing forked tokens to activity
output parameter nodes.
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f o r ( i n t j = 0 ; j < t o k e n s . s i z e ( ) ; j ++) {
Token t o k e n = t o k e n s . g e t V a l u e ( j ) ;
Value v a l u e = n u l l ;
i f ( t o k e n i n s t a n c e o f Objec tToken ) {

v a l u e = ( ( Objec tToken ) t o k e n ) . v a l u e ;
}
e l s e i f ( t o k e n i n s t a n c e o f ForkedToken ) {

v a l u e = ( ( ForkedToken ) t o k e n ) . baseToken . v a l u e ;
}
i f ( v a l u e != n u l l ) {

p a r a m e t e r V a l u e . v a l u e s . addValue ( v a l u e ) ;
}

}

Figure 3: The Java code snippet extends the fUML specification by supporting forked tokens as valid tokens
by activity output parameter nodes.

2.2 Modeling Loops

This section and its parts describe and discuss in detail another problem that we have encountered during the
realization of loops in fUML, which has been solved by a special handling of target pins of CallOperation-
Actions.

As the fUML specification does not support variables (OMG 2016), stating that object flows can be used
to pass data between actions, it is necessary to use input/output pin pairs and object flows. Moreover, the
fUML specification excludes the setupParts of the loop node, that therefore in fUML can only be composed
of at least one Test and an optional BodyPart section.

Loops are one of the basic elements needed in most programs and algorithms. While it is extremely simple
to implement them in any programming language, or in UML by using loop nodes, fUML does not provide
a satisfying full support of such an element.

Loop nodes are suitable for hierarchically structured loops but show difficulties in being used for small
ones, which are more widely used by modelers. For this reason, in this paper we focus on the realization of
loops without the use of LoopNodes. Possible ways of realizing such kind of loops using the current fUML
specification are shown in Figure 4a and 4b.

Figure 4a shows an infinite loop realized with a merge and a fork node. In this case, there are no objects
passed and the loop achieved by control flows only. Both fork node and merge node take care of providing
a control token to the body action, that represents the body of the loop. A terminating condition has to be
verified with a decision node between the merge and fork nodes to realize a finite loop.

Please note that this construct only works if the body part doe not accept other input parameters. If the fork
node is fired before the input pin of the body action gets a token, it will result in an infinite loop. between
the merge and fork node.

Figure 4b shows an infinite loop with object passing which is realized with a merge node and an action,
which can either be a call behavior action with one input and one output pin or a call operation action with
one target pin and one output pin returning the object itself. A terminating condition can be placed between
the merge node and the input pin for a while loop for this case also, or between the output pin and the merge
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InfiniteLoop1

body

MergeNode

(a)

InfiniteLoop2

bodyObject

MergeNode

(b)

Figure 4: Possible realization of infinite loops in fUML. (a): an infinite loop realized with a merge and a
fork node, (b): an infinite loop passing an object realized with an action.

node for a do-while loop. These two small examples show how to obtain an edge that always provides a
token, which is exactly what a UML DataStore node would be suitable for.

2.2.1 Central Buffer Nodes and Data Store nodes

CentralBufferNodes are excluded from the fUML specification because “they were judged to be unnecessary
for the computational completeness of fUML” (OMG 2016). A data store node is defined in the UML
specifications as a “central buffer node for non-transient information. A data store keeps all tokens that
enter it, copying them when they are chosen to move downstream. Incoming tokens containing a particular
object replace any tokens in the object node containing that object” (OMG 2015). DataStoreNodes are
activities’ ObjectNodes and are not supported in fUML as they are a subclass of the excluded CentralBuffer-
Node.

For this reason, data store nodes have been realized in our fUML C++ execution engine by following the
behavior specified in the UML specifications. They can be now used to realize an input or target pin that
holds its token instead of consuming it immediately at the first activation, as shown in Figure 5.

Loop with DataStore

body

<<datastore>>

DataStoreNodeTarget

isFinished
[true]

[false]

Figure 5: UML class diagram representing the data store node hierarchy.

Another possible way of realizing this persistent kind of tokens is explained in the next section.

2.2.2 Target Pins of Call Operation Actions

Figure 6 shows a simplified version of an optimization loop, similar to the one proposed in (Wichmann,
Jäger, Jungebloud, Maschotta, and Zimmermann 2016). The loop realized with a chain of different call
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Loop

A

D B

C

TargetA

In1

TargetC

TargetB

Out1

TargetD

isFinished?

[false]

[true]

Figure 6: A loop realized with call operation actions as allowed by the current specification. The pins follow
this scheme: white pins are target pins, gray pins are input pins and green pins are output pins. Merge nodes
are shown in violet and decision nodes in cyan.

operation actions. It is currently necessary to provide an instance of the class on which the operations will
be performed on the target pins of the call operation action elements. In this way, it is necessary to always
provide an object flow that either comes from an activity input pin, a ReadStructuralFeatureAction, or an
object generated by another action inside the activity. Otherwise, the loop would not execute more than once
without these new tokens on the target pins.

In this way, it is necessary for the considered case to have four merge nodes and four output pins that are
superfluous and make the diagram cumbersome to read and unpleasant to realize. A possible simplification
can be obtained by defining a special behavior for target pins.

Persistent Tokens for Target Pins In Figure 7 a possible simplification is shown. Target pins can be
defined as persistent pins. That means pins have a special behavior that allows their tokens to be preserved
rather than consumed directly. The four small loops that were necessary to provide a new token to the call
operation action’s target pins can then be avoided.

Realizing the necessary connections is hardly feasible for larger activity diagrams, as their number grows
quickly when different call operation actions use the same target object. In that case it is necessary to use a
fork node to distribute the object tokens to all the call operation actions.

A special notation for Target Pins The suggested approach allows the target pins to remain disconnected
under certain circumstances, and replaces this connection with a specifically structured name of the form
self.<attributeName>. This is, of course, not a limitation to the expressiveness of the language, but it clutters
the resulting diagram with additional fork nodes and object flows.

Figure 8 shows an activity with three call operation actions that are executed in sequence, thus demonstrating
the proposed notation. The first one is realized as currently allowed by fUML: that is, by receiving an object
instance on its target pin. The second and the third one show the proposed simplification. Op2 is called on
the instance that is currently present in the attribute attr1 of the class that holds the activity. When the pin
is disconnected and does not have any specific name, as in the Op3 call operation action, it is assumed as
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Loop

A

D B

C

TargetA

In1

TargetC

TargetB

Out1

TargetD

isFinished?
[true]

[false]

Figure 7: The same loop realized with the proposed persistent target pins. Once a token is received, it will
not be consumed immediately but will remain available to the target pin.

Activity

Op1 Op2 Op3

Obj: C1 <<target>>
<<target>>
self.attr1

<<target>>

Figure 8: The class diagram shows three call operation actions whose target pins are shown on top of them.
Op1 works according to the current specification, whereas Op2 and Op3 show our proposed extension.

“self”. This is then equivalent to call a ReadSelfAction (that retrieves the activity’s context object) and to
pass the result to the target pin.

In Figure 9 it is shown how Op2 would need to be realized by using the current fUML’s formalism. The
merge and fork node realize an infinite source of tokens that provide to the target pin a persistent object
token. The instance is then retrieved via the ReadSelf action that returns the instance of the context object
of the action execution. The requested attribute is retrieved from this object by the ReadStructuralFeature
action and provided to the target pin.

The OCL constraint shown if Figure 10 expresses that the call operation action must have at least one
incoming control flow or object flow other than the one that reaches the target pin to terminate the activity
life cycle correctly. Without this constraint, the activity can only be terminated if it contains at least a
reachable activity final node.

Thanks to this notation, it would be possible to simplify the loop shown in Figure 6 to the one shown in
Figure 11. This is not only a graphical simplification, but may lead to an execution speedup too. It allows to
eliminate the overhead caused by input pins and parameter passing, and to execute the operation directly on
attributes that are available to the activity anytime.
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Activity self.<attribute>

ReadSelf Op2ReadStructuralFeature

<<target>>

Figure 9: fUML equivalent to the proposed persistent self.<attribute> annotation.

c o n t e x t C a l l O p e r a t i o n A c t i o n
i n v o t h e r I n p u t s :

s e l f . incomingEdges−> s i z e ( ) > 0 or
s e l f . i n p u t −> s e l e c t ( s e l f . incoming−> s i z e () >0)−> s i z e ( ) >0

Figure 10: OCL constraint that allows a correct end of the execution of the activity containing an extended
call operation action.

Loop

A

D B

C

In1 Out1

self.TargetA

self.TargetD self.TargetB

self.TargetC

isFinished?

[true]

[false]
-TargetA
-TargetB
-TargetC
-TargetD

+Loop(In1) : Out1

LoopClass

Figure 11: On the left side, the loop realized with the proposed simplified notation and the persistent target
pins. On the right-hand side a UML class showing the corresponding method and attributes that will be
accessed by the target pin using the simplified notation.
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Figure 12: Example of the realization inside the ecore fUML model of the DataStoreActivation.

Table 1: Comparison between different loop realizations.

fUML (ms) Simplified Target (ms) Speedup (%)
41937,5 16562,5 2,53

3 IMPLEMENTATION AND VALIDATION

All the solutions and improvement proposed in this paper, except the simplified notation for target pins,
have been realized in our fUML execution engine for C++ and were validated with use cases and integration
tests. More details about the execution engine’s performance regarding execution efficiency and memory
occupied can be found in (Bedini et al. 2017).

The implementation has been realized inside an extended ecore model. The relevant elements have been
added and implemented in C++.

An example for the solution presented in Section 2.2.1 regarding the EClass “DataStoreActivation” is shown
in Figure 12. It contains the element’s EOperations (in the shown example: sendOffers()) and ERef-
erences. The code is defined inside the EAnnotations. Each annotation must hold at least one details entry,
whose key can be either includes or body. The code inside the body annotation contains the C++ implemen-
tation of the standard UML behavior for the corresponding operation.

The ecore model has been generated to C++ and successfully compiled and executed. The optimization loops
described in Section 2.2.2 have been generated and executed by our execution engine. The results were
analyzed and compared to each other.

The execution output shows that the value obtained by the execution of the different proposed solutions are
equal and the loop’s elements were executed in the correct order. Table 1 shows the average of 10 executions
of the loops shown in Fig. 6 and Fig. 7 for 2500 loop iterations. Each call operation action simply adds 1 to
the given input value, until a value greater than 10000 is reached.

The obtained result shows that the diagram realized by using the simplified notation has a better performance
than the one which is allowed in standard fUML thanks to the lower number of elements and unneeded
passages of tokens.

4 CONCLUSION AND FUTURE WORKS

This paper has shown how highly-used modeling practices can be simplified by extending the fUML’s spec-
ification to support more advanced elements. Loops realized with chains of call operation actions can be
reduced to a simplified notation regarding their target pins or by the use of DataStoreNodes.
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Thanks to these simplifications, it becomes possible to realize complex diagrams such as optimization loops
with a reduced number of elements that are more pleasant to read and easier to generate. The execution
performance benefited from the reduced number of generated elements that led to a smaller number of token
activations.

Future Work The final goal of this work is to realize a modeling IDE for fUML that supports the def-
inition of the constructs proposed in this paper, allowing the generation and the execution of the resulting
model in C++. This will be achieved either internally generating the required fUML equivalent models intro-
duced in this paper to keep the resulting tool fully fUML-compliant, or by directly generating the proposed
elements in a code-efficient way. The source code for the C++ code generator and execution engine can be
found at the MDE4CPP project page (Systems and Software Engineering Group 2016).
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