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ABSTRACT

Biological cells are the prototypical example of active matter. Cells sense and respond to mechanical, chem-
ical and electrical environmental stimuli with a range of mechanistic responses, including dynamic changes
in morphology and mechanical properties, chemical uptake and secretion, cell differentiation, proliferation,
death, and migration. Modeling and simulation of such dynamic phenomena pose a number of computa-
tional challenges. A modeling language describing cellular dynamics must naturally represent complex intra
and extra-cellular spatial structures and coupled mechanical, chemical and electrical processes. A compiler
must then be able to generate a computational model from this physically motivated description. Finally,
a simulator must efficiently evaluate the time evolution of the computational model to generate simulation
results. We present the Mechanica modeling language, compiler, and particle-based simulation engine. Me-
chanica enables construction and simulation of mechanistic models of natural phenomena which couple
mechanical and chemical processes, using natural, physically and biologically motivated constructs.

Keywords: Declarative Modeling Languages, Biological Systems Modeling, Physically Based Modeling
and Interactive Simulation.

1 INTRODUCTION

Life is the result of a complex interplay between chemical, mechanical, electrical and other physical pro-
cesses (Brodland 2015). Biological cells exist in a dynamic, spatial, fluid environment where they sense
stimuli in their environment such as physical forces, chemical and electrical signals, fluid pressure and
flow, or other physical properties. Cell responses include changes in morphology or mechanical properties,
proliferation, death, differentiation, motion and production of signals.

Mechanistic models of natural systems do not attempt to replicate physical reality in exact detail, but de-
scribe the mechanisms which quantifiably predict specific observed behavior. Since all aspects of a model
are controlled, while many aspects of an experiment are not controllable or not observable, simulations en-
able researchers to test and validate hypotheses. Simulations are often faster than real time and are generally
cheaper, safer and sometimes more ethical than real-world experiments.

Building mechanistic models of biological phenomena can be challenging, both because of the inherent
complexity of the biological system being modeled and because models are typically written in program-
ming languages that do not easily describe physical concepts. Most programming languages either represent
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abstractions of the underlying Von Neumann hardware architecture, or are meant to represent models of
computation (e.g., λ calculus) rather than natural physical phenomena.

In order to enable scientists to create mechanistic models easily, we are developing a new programming lan-
guage and simulation environment, Mechanica. Our motivating problem domain is mesoscopic molecular
and cellular biology, where atomistic simulation approaches are not computationally tractable and deter-
ministic continuum approximations are not valid. Mechanica is a physically motivated model description
language and simulation engine suitable for many kinds of mesoscopic agent-based phenomena.

Mechanica describes models in terms of objects and processes. Objects are the physical things being studied
in our problem domain. Objects are state-full things that exist as snapshots in time; objects themselves are
time-invariant – they do not have any intrinsic dynamics. Processes act on objects and change the state of
objects over time. They define the dynamics and interactions of and between objects. Objects and processes
work together to define how a system evolves over time; i.e., they describe a dynamical model.

2 RELATED WORK

Languages designed for modeling dynamic physical systems differ from mainstream programming lan-
guages in that they incorporate notions of time and/or space (Beal et al. 2013) and alleviate the need for
users to think about low-level computational implementation details. Many modeling approaches can de-
scribe different aspects of biological processes. Some modeling approaches are well-suited for macro-scale
chemical reactions, others at nano-scale atomistic dynamics, but few approaches exist for meso-scale dy-
namics that allow for a natural description of coupled chemical and mechanical processes.

Systems biology is a holistic or integrative approach that seeks to understand phenomena as a whole, and
such approaches frequently represent biological phenomena like gene regulatory, chemical or metabolic
networks. Systems biology focuses on how individual components interact and communicate rather than
investigating the internal workings of the components. Systems biology modeling approaches tend to have
constructs for representing transformation processes such as chemical reactions and discrete events, but lack
concepts to represent dynamic geometry and mechanical processes. Systems biology models are represented
with languages such as Systems Biology Markup Language (SBML), Petri Nets or process algebras.

SBML (http://www.sbml.org/) can describe phenomenon such as chemical reactions in a well-stirred com-
partment, but has limited support for spatial processes and no concept of forces, dynamic geometry or
structural rearrangement. SBML itself has well-defined semantics for discrete events which we adopt in
Mechanica, and individual SBML models can be connected together as part of a larger simulation environ-
ment such as discrete event simulation (Belloli, Wainer, and Najmanovich 2016).

Petri Nets are a modeling formalism introduced by Carl A. Petri to represent chemical networks. Petri
Nets are well-suited to describe concurrent communication and synchronization networks. Colored Petri
Nets (CPN) (Jensen, Kristensen, and Wells 2007) combine Petri Nets with a functional programming lan-
guage to create a discrete event modeling language. The integration of a functional programming language
simplifies model construction and increases the modeling capability of CPNs. CPNs are frequently applied
in systems biology, and multiple CPNs can be coupled and arranged in a grid to simulate spatial systems such
as bacterial colonies (Pârvu et al. 2015). CPNs generally lack concepts of dynamic space and do not have
a natural way to describe mechanical processes. Certain CPN-related process algebras (like Cardelli’s 3π
language (Cardelli and Gardner 2010)) can describe dynamic spatial arrangements. Mechanica also incor-
porates a functional programming language similar to the way in which CPNs combine reaction networks,
discrete events and a functional programming language.
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Systems biology approaches in general are not ideally suited for describing bio-mechanics, as they do not
have natural ways to represent mechanical constructs such as forces, stress, constitutive relations, or geom-
etry transformations.

Particle based approaches start at the nano rather than system scale and describe natural phenomena from
an atomistic perspective. Traditional MD simulators model a fixed number of spherical, volume-excluding
particles (atoms) interacting with a classical force field. MD simulators have simple particle types and are
restricted to a finite set of predefined forces. Reactive MD simulators such as ReaxFF (van Duin et al.
2001), ReaDDy (Schöneberg and Noé 2013), or SRSim (Gruenert et al. 2010) extend classical MD with
reacting particles. ReaxFF evolves particles via energy or temperature constrained Newtonian dynamics,
and ReaDDy and SRSim via over-damped Langevin dynamics. Reactive MD simulators can model self-
assembly of complex materials out of particles. ReaDDy supports particle creation and annihilation, whereas
particle count is fixed in ReaxFF and SRSim. Reactive MD alters bonded relationships between particles
to form chemical complexes by adding or removing mechanical bonds between particles. SRSim uses
BioNetGen to specify reaction rules, whereas ReaxFF and ReaDDy use their own specification format.

Reactive MD excels at describing the nano-scale, however meso- and multi-scale phenomena present chal-
lenges. Reactive MD particles are simple, in they only have position, momentum and orientation, and are
not typically augmented with additional state variables, thus individual particles cannot model more com-
plex things like macromolecules or cells. Model specification in Reactive MD can be challenging because
users typically specify custom forces in C++ or Java instead of a model description language. Reactive MD
does not have concepts of continuous chemical reactions or fields like systems biology approaches.

Stochastic particle simulators such as MCell (Stiles, Bartol, et al. 2001), Smoldyn (Andrews et al. 2010), or
ML-Space (Bittig and Uhrmacher 2016) are well-suited for spatial biochemical simulations such as reaction-
diffusion in complex geometries. These simulators move individual rigid particles with either spatial Gille-
spie or Brownian dynamics as opposed to interaction potentials as with MD. MCell is restricted to point
particles with no volume exclusion, ML-Space particles are volume excluding and Smoldyn particles can
be either. Particles can react, diffuse, be confined by surfaces and bind to membranes. Smoldyn and MCell
particles are simple, but ML-Space particles can contain other particles and support hierarchical compo-
sition. ML-Space and MCell models are specified with a natural and elegant rule-based approach similar
to BioNetGen (Faeder, Blinov, and Hlavacek 2009), and Smoldyn supports rule-based reaction network
generation. However, most stochastic particle simulators only support fixed geometries, and cannot model
mechanical or electrical processes or dynamic morphology. Multi-scale simulations are challenging because
these simulators because do not have a way of describing continuous fields.

Transport Dissipative Particle Dynamics (tDPD) (Li et al. 2015) combine features from Systems Biology
and MD to create a very general multi-scale modeling paradigm. tDPD augments the simple MD particles
with additional state variables such as chemical concentrations, and adds continuous chemical reaction net-
works. tDPD particles can represent either solids or fluids. tDPD is ideally suited for multi-scale models
because it represents both large, coarse-grained particles which interact with small diffusing particles rep-
resented as continuum concentrations. tDPD is a relatively new modeling approach, hence most tDPD sim-
ulation appear to be hard-coded in general-purpose programming languages. To our knowledge, no model
specification language exists for tDPD. No tDPD simulation appears to support reacting particles as with
Reactive MD, nor do any tDPD simulations support discrete events as do the systems biology approaches.

Mechanica builds on the tDPD and incorporates reacting particles and discrete events, and defines a model
declaration language.
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3 APPROACH

The Mechanica modeling language (MML) enables construction of mechanistic models of natural phenom-
ena. MML is based on a functional subset of Microsoft Typescript, and includes conventional constructs
such as variables and functions, but adopts syntactic concepts from POVRay, a widely used spatial scene de-
scription language for geometry description, and pattern matching rules inspired by ideas from BioNetGen,
OCaml and Mathematica.

MML has two basic constructs: objects and processes, to reflect the objects and processes found in natu-
rally occurring phenomena. Objects in MML can be a conventional primitive type (e.g., scalars, integers,
booleans, enums), or a composite. An object is an instance of a type. A type defines the object’s structure
and layout, and a state space, or the set of permissible values that can be stored in the object. Objects have
an identity, a symbol which names and refers to the object. MML introduces new types such as particles,
concentrations, amounts, spatial regions, and spatial fields with special semantics to support spatial hybrid
systems modeling.

MML represents materials as a collection of particle and link objects. MML particles typically represent
“parcels” of small pieces of real materials rather than atoms. Links are persistent structural relationships
which connect two or more material objects, and apply a force between the connected objects. Links gener-
alize bonded relationships from molecular dynamics, with two main differences: links can be dynamically
formed and broken, and their functional form is user specified rather than fixed. This particle-based ap-
proach enables MML to create a completely unified treatment of all materials. Solids are strongly bonded
particles, fluids are weakly bonded particles, and Mechanica can simulate any range in between.

Processes in MML are different from processes in the traditional computing sense in which processes typi-
cally are a sequence of instructions that define a series of discrete state changes in objects. MML processes,
on the other hand, define either continuous or discrete transformations, which includes creation, deletion
and state change. Processes map a set of inputs to a set of outputs, and define a transformation as either a
discrete atomic operation or a continuous operation. Both kinds of processes can have when and while
predicates which specify the conditions for activating and deactivating the process. Processes have body
which calculates a probability (real value, [0,1]) for discrete processes or a rate for continuous processes.
The probability for discrete processes defines the likelihood that the process will be applied if its predicates
are true; the probability defaults to 1 if not present. The rate for continuous processes specifies the rate of
transformation of its inputs to outputs. Process and function definitions are side effect free – they cannot
directly modify non-local symbols.

Discrete processes are similar to events in Modelica or SBML. They obey the same semantics as SBML
events, and we evaluate them using the SBML event handling algorithm we developed in (Somogyi 2014).
Discrete process definitions specify a pattern of what objects to act on, and conditions that specify when to
trigger the process. Like SBML, discrete processes instantaneously change variable values. Additionally,
MML discrete processes can create and destroy object instances. (Note: this paper focuses on continuous
processes and does not discuss discrete processes in detail.)

Continuous processes are a generalization of chemical reactions and define the time evolution of participat-
ing continuous variables such as concentrations, amounts, real or complex numbers. Continuous variables
can be attached to any particle type following (Li et al. 2015). Thus, as the particles move, the attached
chemical amounts are advected along with them. Continuous processes definitions specify the rate at which
the process occurs.

Particles are the basic building blocks of materials. They have a position and optional attributes such as
spatial extent, orientation, mass. They can be point particles or have complex shapes. Links can be applied
either explicitly or implicitly. A link can be applied explicitly to a set of material objects, and this set
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will remain explicitly bound until the link is removed. The link can be removed either explicitly or by
defining a while predicate in the link definition. Links can also be implicitly applied to a spatial region by
specifying a when predicate. Here, a process will monitor the when predicate, and apply the link to any set
of objects that match the predicate. In this sense, implicitly applied forces behave similarly to long-range or
non-bonded interactions in MD.

We can define a simple particle-link system with a pair of point particles, a and b, located at (0,0,0), and
(1,0,0) respectively, and explicitly connect them with a spring link as

a:particle(0,0,0,mass=1); b:particle(1,0,0,mass=1); link(a,b){-k*(1-dist(a,b))};

This particular link defines a Hookean spring force, with a rest length of 1, where the dist function calculates
the distance between two objects. Link definitions, however can contain arbitrary user-specified force defi-
nitions. This yields a very flexible model because users may specify the interaction force to be as complex
as they like. For example, a two body force could be as simple as a Hookean interaction, or as complex as a
dipole, quadrupole or octopole interaction.

A biological cell has on the order of 1014 atoms, so it is simply not computationally feasible to model
a cell at all-atom resolution. Many smaller (< 100nm) sized molecules are soluble and readily diffuse
through solution. If we are interested in micro- rather than nano-scale phenomena, we may approximate
diffusing chemicals as continuous, spatially varying concentrations. MML has concentration and amount
data types which can be attached to any material object. Concentration values are automatically scaled by
the volume of the material object that it is attached to. Say a particle has a concentration attribute and the
particle’s volume increases, then the value of the concentration decreases. As each material point moves, the
attached values move along with it. Chemical concentrations can be attached to any kind of material such
as fluids (solvents), surfaces (cell membranes) or fibers, and they can also be attached to spatial regions.
Concentration or amount types can be added to any object by adding them to the object’s definition. For
example, we could create a new particle p with attributes A as a concentration, B as a constant concentration
(boundary value), and C as an amount by:

p : particle { A:conc; B:const conc(5.0); C:amount(1.23); }

We may want to fill a region with material particles. Fluid particles have a set of forces act on them which
effectively models a fluid. To create a spherical fluid droplet, we first define a MaterialRegion, which
is bounded by a surface, and fill it with fluid particles. The fill function determines the available space
inside a region and packs it with objects of the given type.

MaterialRegion{
surface:Sphere { radius:5, resolution:1 };
body:fill(type=FluidParticle{radius=5});

}

Material regions can also have homogeneous, spatially uniform interiors if we do not specify a body. Ho-
mogeneous regions can behave as a liquid bag if we attach a volume preservation link to the object. When
concentrations, amounts or other attributes are attached to a homogeneous material region, their value is
constant for the entire region.

Chemical reactions are fundamentally important in biology. Reactions define the transformation of a set of
reactants into a set of products and can be readily described by processes. A set of continuous processes
between a set of inputs (reactants) and outputs (products), such as a set of concentrations, defines a reaction
network as in Fig. 1. The Mechanica compiler reads the process definitions and generates a system of
ordinary differential equations (ODEs) which define the time evolution of reactants and products. Process
definition syntax is similar to conventional chemical reaction notation, and is based on Microsoft Typescript
type specification syntax. For example, to add a chemical reaction network to an object, one would simply
write a set of process definitions in the object definition. Process definitions begin with the proc keyword,
have an optional name, a set of inputs, a set of outputs and a reaction rate expression as in Fig. 1. If the
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object definition does not already have local definitions corresponding to the product names from a process
definition, then the process definition implicitly adds concentration types in the object definition for these
names. We do this as a user convenience since chemical reaction networks are among the most common
modeling tasks.

Processes can define intra-particle reactions, such as a flux between values located at neighboring particles.
Thus, processes can define general reaction-transport problems. Spatial process definitions are written and
behave identically to processes confined to one object. The spatial information is simply added in the input
argument definitions. For example, to define a Fickian (passive diffusion) flux of the value of A attached to
material objects, a and b of type MyMaterial, we would write:

proc (a:MyMaterial.A) -> (b:MyMaterial.A) when (dist(a,b) < 5) {k * (a - b)};

This process definition has a when clause that defines a cutoff distance of 5, and the dist function recog-
nizes that the values are located at different locations. Fickian diffusion flux of continuous valued concentra-
tions between material points is the same approach that (Li et al. 2015) used to model advection-diffusion-
reaction, dCi/dt = ∇(Di∇Ci)+Qs

i , i = 1, . . . ,N. They validated their approach against a variety of analytical
solutions and demonstrated that augmenting a particle fluid model with scalar values at each material site
incurs negligible computational overhead.

A field is a mapping between a value at any spatial location and a set of values associated with material
points. In general, any continuously valued field, A(r) can be approximated as a sum over a set of appropriate
kernel functions, A(r) = ∑i f (Ai,r,ri), where Ai is some quantity located at the source location ri, and r is
the field location. This definition enables us to define any continuous field as a function of the material. For
example, the kernel function for an electric scalar potential would be qi/4πε0|r−ri|. In general, if the value of
some scalar quantity A is known at a finite set of material points, then the value may be approximated at any
location in space A(r) with a suitable interpolation function (Liu and Liu 2010). This allows us to attach a
chemical concentration to a material point and evaluate that concentration at any point in space. For example,
one might define a chemical compound attached to solvent points and read the chemical concentration value
at some non-solvent material point. We provide default kernels for chemical concentrations and charge, but
users are free to define their own kernels.

type MyCell : MaterialRegion {
surface : Sphere {

radius:5, resolution:1
};
proc (A) -> (X) {k1 * A};
proc (X, 2 Y) -> (3 X) {

k2 * X * Y**2
};
proc (B, X) -> (Y, D) {

k3 * B * X
};
proc (X) -> (E) {k4 * X};

}

⎡
⎢⎢⎢⎢⎢⎢⎣

dA/dt
dB/dt
dD/dt
dE/dt
dX/dt
dY/dt

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0

0 0 −1 0

0 0 1 0

0 0 0 1

1 1 −1 −1

0 −2 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦
·

⎡
⎢⎢⎣

ν1

ν2

ν3

ν4

⎤
⎥⎥⎦

Figure 1: Mechanica source code for creating a MaterialRegion derived type which is bounded by a

spherical surface composed of a set of points and triangular faces. Four local continuous transformation

processes define a reaction network between symbols A,B,D,E,X and Y . The Mechanica compiler gener-

ates a system of ordinary differential equations from the continuous process definitions. The compiler also

generates a set of particles to form the bounding surface of the MyCell type. The right column shows

a screenshot of the MyCell object in its initial configuration, then at a later time after it moves along a

surface.
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Most traditional languages employ symbol scoping blocks. These are regions of code that define where a
symbol (variable definition) is visible. Scoping blocks can contain other scoping blocks. Depending on the
language, code in the child blocks can usually access variables defined in parent blocks. Lexically scoped
languages resolve non-local symbols to the scoping block in which the function was defined. Dynamically
scoped languages such as PERL resolve non-local symbols to the scoping block in which the function is
executing.

In order to account for the spatial nature of our problem domain, we introduce a new kind of scope resolution
we call spatial scoping. Spatial scoping is based on the idea that processes represent a physical process, so
processes always have to execute somewhere in space. The present location of a process is implicit, much
like the this pointer is implicit in Java. Non-local symbols in process bodies resolve to the present spatial
environment in which the process currently runs. Spatial scoping is similar to dynamic scoping in that
symbol resolution depends on the calling context of a function; however, in spatial scoping, the calling
context is a containing spatial region.

Users typically never have to explicitly keep track of coordinate systems; instead the runtime manages all
this. All users have to know is the name of the value they want to read. Spatial scoping treats different kinds
of spatial objects uniformly. For example, consider a transformation process which converts one substance
to another, where the rate (the body of the transformation process definition) depends on the concentration
of some other substance,

proc (A) -> (B) {k1 * A * C};

Here, C is a non-local symbol, so the runtime will search in the containing spatial environment. This process
for example could be attached to a fluid particle. This particle type may have a C attribute attached to it, in
which case C resolves to that value. If the particle does not have such an attribute, then the compiler will
check if the containing spatial environment defines the C symbol. The containing spatial region may define
the C as a scalar, in which case the value of C is uniform for the entire region, and this symbol resolves to
that value. Or C may be defined as a spatially varying field, in which case the compiler will generate code
that reads from that field at the present location of the particle. If this symbol cannot be resolved in any
containing environment, and there is no field definition, then the compiler will report an error.

Processes in MML are very general, being used to define not only transformations of continuous valued
objects like amounts and concentrations, but also discrete objects such as particles, materials, and other
composite objects. Processes acting on discrete objects have the identical syntax as processes acting on
continuous objects, the only difference is the semantic interpretation of the process body. A discrete process
body is expected to return a probability value, a real value between zero and one, as opposed to a reaction
rate for continuous processes. For example, line 1 defines two new types, A and B, derived from particle.
Line 2 defines a process which consumes two discrete particles of type A, and produces one particle of type
B. Line 3 defines a process which consumes a single object of type B and produces two objects of type A
with random probability.

1 type A:particle{radius:1}; type B:particle{radius:2};
2 proc (a:A, b:A) -> (B) when (dist(a,b) < 5) {exp(-dist(a,b)**2)};
3 proc (a:B) -> (A, A) {rand()};

Processes can also be used to change the values stored in one or more attributes. Process can be defined so
that their inputs have to be in a certain state, so that they match a particular pattern. We borrow the record
pattern matching syntax from OCaml to specify the state of an object where a process can be applied. For
example, say an object of type A has an attribute named activated which is an enum, and we want to
toggle this from Inactive to Active when this object is near another object of type Activator

proc (a:A{activated=Inactive}, b:Activator) -> (a{with activated=Active}, b)
when (dist(a,b) < 5);
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The with keyword is borrowed from OCaml, and specifies that the attributes in the with expression
should take on new values, but all other attributes should remain unaltered. The second argument, b of type
Activator, is unaffected and passes straight through. The body of this process is omitted, which defaults
the probability to 1 and tells the compiler that this process should always be applied whenever these two
particles match the when pattern, i.e. are within a distance of 5.

Many proteins have binding sites where other molecules can attach, altering the behavior of the protein.
MML introduces a new data type called site to represent binding sites; any spatial object can have binding
site attributes. We may for example add two binding sites to a particle type, and use a process to bind two
objects together dynamically when certain conditions are met.

type A:particle{s1:site(empty); s2:site(empty)};
proc (a:A{s1=empty}, b:A{s2=empty}) -> (link(a.s1,b.s2){-k*(1-dist(a-b))})

when (dist(a,b) < 5);

This process binds the s1 binding site of a to the s2 binding site of b with a new link. When a link or
some other connector attaches to a binding site, the Mechanica semantics state that that binding site should
become non-empty.

Mechanica combines a tDPD system with discrete events and dynamic connectivity. Any variable that is
produced or consumed by a continuous process is a continuous variable; the set of continuous variables,
C1,C2, . . . ,Cn form the continuous state vector C(t). Each process definition body can access the present
continuous variable states, particle attributes, and constant parameters to calculate the process transforma-
tion rate. The set of continuous processes defines a system of ordinary differential equations (ODEs) in the
form of

d
dt

C =

[
Ċ f

Ċr

]
=

[
N ·ν(C,r,v,p)

f (C,r,v,p)

]
. (1)

The state vector comprises two partitions: C f is the vector of independent continuous variables (which par-
ticipate in a transformation processes, i.e., a reaction network), and Cr is a vector of variables which are
defined by rate processes. The vector p consists of time independent parameters. The reaction network of
m continuous variables and n transformation processes defines the m×n stoichiometry matrix N. Each stoi-
chiometric element, Ni, j is the net number of continuous variables i produced or consumed in transformation
process j. All of the transformation process definitions combine to form the transformation rate function ν .
The second part of the state vector, Cr, is a set of variables which form a system of conventional ODEs, i.e.
each element in this vector is defined by a rate process. Only the Mechanica runtime can directly change
variable values.

The net force on each particle is the sum of the linked, FL, conservative, FC, random, FR, dissipative, FD,
and external, Fext forces. The linked force is the sum of the linked relationships between the particles. The
conservative force is a soft interaction which ensures volume exclusion and keeps materials from interpene-
trating. The dissipative force represents the effects of viscosity, and the random force represents the effects
of thermal fluctuations. Integration time steps can be large because these inter-particle forces are soft and
have short-range interactions. More details on the conservative, random and dissipative forces can be found
in (Li et al. 2015). The time evolution of particle positions, r and velocities, v is defined as

d2ri

dt2
=

dvi

dt
=

1

mi
Fi =

1

mi

(
∑
i�= j

(
FL

i j +FC
i j +FD

i j +FR
i j
)
+Fext

i

)
. (2)

The runtime calculates the time evolution of the model via time slicing – time is partitioned into a series of
discrete time steps. Each time step has three phases: (A) evaluate and apply the when and while predicates
of the discrete processes determine if they should be triggered, and apply them. Links are attached and
detached in phase 1 according to their when and while predicates. (B) integrate the continuous state
vector variables according to eqn. 1 and (C) integrate the particle positions according to eqn. 2.



Somogyi and Glazier

3.1 Mechanica model of chemotaxis

Chemotaxis is a biological process which describes the motion of a cell towards or away from a chemical
signal. We use chemotaxis as a biological example to illustrate the coupling of chemical and mechanical
processes and demonstrate how we can represent a few chemotaxis mechanisms in Mechanica. Cells un-
dergoing chemotaxis can sense spatial gradients in chemoattractant concentrations. Chemoattractants are
frequently secreted from some source, such as a bacterium at a specific location. Here, we define a rule
to secrete a chemoattractant from a fixed point source in space. We first define the model environment
with an explicit solvent. We write a rule in the top level spatial region which fills it with explicit solvent
particles (line 1). This rule states that any space that is not filled with sub-objects gets filled with solvent
particles. This rule creates a symbol called solvent which is of type water. CXC is a common biological
chemoattractant, which we will secrete from a point source located at (20,20,0) (line 2). This rule increases
the concentration of CXC on the solvent particles whenever they are within a distance of 5 from the point
[20,20,0]. Because the CXC symbol is listed as a product, the rule implicitly adds the symbol CXC as a
chemical concentration attribute attached to the solvent particles. The solvent will transport the CXC along
with it, but we want to allow the CXC to diffuse through the solvent. We can use the built-in diffusion rule
or we can write our own. Say we want simple Fickian diffusion between solvent particles (line 3). This
process defines a transformation process to represent diffusion of solute between neighboring particles. It
has a flux rate of k∗(a−b), where k is a constant, and a,b are concentrations of CXC located at neighboring
particles.

1 solvent:fill(type=Water);
2 proc () -> (b:solvent.CXC) when (dist([20,20,0], b) < 5) {aRateConstant};
3 proc (a:solvent.CXC) -> (b:solvent.CXC) when (dist(a,b) < 5) {k * (a - b)};

Our cell model will only define a single basic cell object that sticks to a horizontal surface. In order to
represent a single cell, we can define a basic MaterialRegion derived type as in Fig. 1, where the initial
cell is shown in the top-right. We can place a single instance centered at [0,0,2.5] via

mycell:MyCell{origin:[0,0,2.5]};

Cells frequently stick to the surface that they’re on. We can represent this adhesion with a link that causes
the cell’s surface to stick to the base surface. Stickiness tends to be asymmetric, so we can write the link rule
to attach at a shorter distance than when it releases. We can think of it as similar to a Velcro adhesion, where
the two components must be close to activate, but the force can hold on a bit longer when its stretched. In
addition to the when clause, links can also have a while clause which can define a deactivation condition
that differs from the activation condition. This rule creates links which connect the particles of the cell’s
surface to the floor of our simulation domain.

link(a:mycell.surface,b:BoundingPlanes[FLOOR])
when (dist(a,b) < .5) while (dist(a,b) < 2)
{-k*(dist(a,b))}

In our simple model we approximate the cytoplasm as water. We fill the body of the cell with water particles
by adding the following line to the cell definition.

mycell.body:fill(type=Water);

A biological cell’s surface often contains many chemoattractant receptors. Essentially these bind and de-
grade diffusing chemoattractant molecules in the fluid medium around the cell, and initiate a spatially vary-
ing signaling cascade in the cell. We observe that the receptor can be either active or inactive, and only
active receptors initiate signaling inside the cell. We can model these observations with the following rules:
Line 1 creates a surface bound concentration of active receptors mycell.body.ARectpt, with an initial
concentration of 0.0. Line 2 represents passive diffusion of solvent CXC to cell’s surface, with a diffusion
rate of k∗ (a−b). Lines 3-4 define a reaction that consumes CXC on the surface and produces active recep-
tor ARecpt. There are a finite number of receptors, so we want this reaction to saturate, hence the form of
the reaction rate.
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1 mycell.surface.ARectpt:conc(0.0);
2 proc (a:solvent.CXC) -> (b:mycell.surface.CXC) when (dist(a,b) < 5) {k * (a - b)};
3 proc (a:mycell.surface.CXC) -> (b:mycell.surface.Recept) {
4 k2 * a * exp(-b**2);
5 };

Signaling cascades inside the cell usually involve many stages, but here we assume that an internal com-
pound Rho (known to induce actin polymerization) can be activated by an active surface receptor, ARecept.
Many chemotaxis models propose that actin filament polymerization in the leading edge of a migrating cell
is principally responsible for lamelipodium extension. We approximate this mechanism with a set of spring-
like forces that push the cell nucleus away from the cell surface. In the presence of active Rho, the springs
elongate and adjust their applied force between the nucleus and the surface particles; otherwise they have
no effect. We model Rho as a cytosol diffusing compound which decays over time. Line 1 creates a new
concentration called Rho attached to the body of the cell (the cytoplasm). Line 2 produces Rho on cy-
toplasm particles at a rate proportional to surface ARecpt concentration. This is an example of spatial
scoping, where the reaction occurs at a cytoplasm fluid particle (the reaction is producing Rho on the cy-
toplasm particles), so symbols referring to concentrations not attached to the particle resolve to the spatial
field produced by these concentrations. The mycell.surface.ARecpt symbol resolves to a value that
approaches the exact surface concentration value when the cytoplasm particle is near, but falls off rapidly if
the cytoplasm particle’s distance away from the surface is high. Line 3 defines a passive diffusion of Rho
between neighboring cytoplasm fluid particles. Line 4 cause Rho to decay at a rate of k · [Rho], or propor-
tional to the concentration of Rho. Lines 5-7 define a set of links that attaches the cell nucleus particle to
the cell surface particles. Spatial scoping evaluates non-local symbols in link definitions at the midpoint of
the link. Thus, when cytoplasm carrying high concentrations of Rho move near the link midpoint location,
the Rho symbols evaluates to a high value, which causes the spring force to increase. If the concentration
of Rho at the link location decreases, say, the link moves away or the Rho decays at this location, the spring
force will contract, causing the cell membrane to retract.

1 mycell.body.Rho:conc(1.5);
2 proc () -> (a:mycell.body.Rho) {k * mycell.surface.ARecpt};
3 proc (a:mycell.body.Rho) -> (b:mycell.body.Rho) when (dist(a,b) < 5) {k * (a - b)};
4 proc (a:Rho) -> () {k * a};
5 link(a:mycell.nucleus, b:mycell.surface) {
6 -k * (dist(a,b) - restLength + k2 * Rho);
7 }

3.2 Simulator Details

The Mechanica simulator is loosely based Model-View-Controller paradigm. It is comprised of five key
objects: Simulator, Model, View, Integrator, and Compiler. The Simulator is the top-level object which
orchestrates the interaction of the others. It uses the Compiler to read a source MML document(s) and
generate a Model. The Model contains the compiled form of the MML model and the present state. The
Integrator calculates the time-evolution of the Model. The View displays the present model state in an
OpenGL window. The Model notifies the view when its state changes so that the View can update the
display.

The front end of the Mechanica compiler is a conventional recursive descent parser which generates an
abstract syntax tree (AST). The semantic analysis phase of the compiler, however, differs from procedural
programming language compilers. Unlike procedural languages where there is a reasonably close mapping
between language statements and the resulting machine instructions, MML statements specify rules and
relationships rather than explicit instructions. The Mechanica compiler analyzes the model processes and
rules and use this information to generate the two time evolution systems of equations, eqn. (1) and eqn. (2).
The Mechanica compiler performs semantic analysis of the continuous process definitions using techniques
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we established in (Somogyi 2014). The Mechanica compiler presently generates C code, and uses GCC to
compile this into a shared library. The compiler then creates a new Model object which loads this shared
library. Although MML object definitions appear similar to a C struct, our in-memory storage is different.
All the continuous variables are stored in a single contiguous array, and the particle position and velocity
vectors are also stored in contiguous arrays.

The Mechanica integrator uses CVODE (Hindmarsh et al. 2005) to calculate the time evolution of the contin-
uous variables. We chose the contiguous memory layout to match CVODE. At each time step, CVODE oper-
ates in-place on this shared memory block. We also use CVODE’s root finder to check if any when/while
predicates should trigger discrete processes. The Mechanica Integrator uses a modified version of Pedro
Gonnet’s mdcore library (http://mdcore.sourceforge.net/) to calculate the time evolution of the particle posi-
tions. The contiguous array storage of the particles and velocities also matches mdcore’s layout, thus mdcore
operates in-place with no memory copying. mdcore uses the compiled MML model force function to cal-
culate inter-particle potentials. The integrator uses the distance cut-off information from the link predicates
to specify a potential cut-off distance for mdcore, which mdcore then uses to construct optimal Verlet and
cell lists. Unlike traditional molecular dynamics or particle systems, the particle count in Mechanica models
changes over time. The runtime initially allocates a large block, more than the initial particle count, and as
particle count increases, it performs a realloc on that block. We are investigating more efficient approaches
for dealing with this challenge.

4 CONCLUSION

We are developing the first known modeling language which can represent generalized continuous trans-
formation processes, forces, fluid flow, and material state transition in the same language. The Mechanica
language enables users to create physically motivated models of complex natural phenomena using mecha-
nistic instead of computational building blocks. Mechanica is currently under active development, all source
code and binaries will be made available on the Mechanica website, (http://www.mechanica.org) under a
permissive open source license (BSD/GPL dual license).
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