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ABSTRACT 

Verification of models is necessary for some classes of systems to guarantee safety properties in addition 
to satisfying functional requirements. Exhaustive model checking is a full proof method for verifying lack 
of undesirable behavior for dynamical systems. In this work, we present a model checking verification 
method for Network-on-Chip (NoC) models. For this purpose, a constrained version of the atomic DEVS 
modeling formalism is formulated and applied to verification of an NoC router. This is achieved by adding 
constraints on the state size and the number of transitions in the atomic model. A model-checker is 
introduced into the DEVS-Suite simulator for verifying constrained DEVS models using the DEVS 
simulator protocol. The model-checker is used to verify a model of NoC router component at different 
scale. The state space size, number of state transitions, and execution time metrics, without and with fault, 
demonstrate the verification of constrained DEVS models.  

Keywords: Constrained-DEVS, DEVS-Suite imulator, odel hecking, Network-on-Chip, erification   

1 INTRODUCTION 

Both validation and verification techniques are used to achieve some degree of assurance that models are 
accurate representations of systems of interest. Based on the nature of models for a system such as Network-
on-Chip (NoC) one can use various V&V techniques (Sargent 2005, Whitner and Balci 1989). Model 
validation determines the degree to which some model along with its data is an accurate representation of 
a mental or physical system from the perspective of its intended use. For model verification the goal is to 
show a system’s desired structure and behavior are correctly specified.  

Network-on-Chip (NoC) (Hemani, et al. 2000) acts as a communication subsystem between Intellectual 
Properties (IPs) communicating on a System-on-a-Chip. Communication is treated as series of packets sent 
and received using an underlying network. Four open research and future challenge categories have been 
identified for NoC design: 1) application specification and modeling, 2) application optimization for 
communication, 3) communication architecture analysis and evaluation, and 4) NoC design validation and 
synthesis (Marculescu, et al. 2009). In the 4th category, the authors briefly explore NoC verification and 
point out that this field has received less attention compared with other research categories. Research in 
model verification includes showing correct delivery of packets while ensuring absence of 
deadlock/livelock. Although verification capability for packet delivery and deadlock/livelock is necessary, 
it is insufficient considering the expected functionality of NoC. It would be helpful if one could also verify 
correctness of other properties such as worst-case flit latency and packet/flit loss ratio. 
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In this research, we use model checking as the verification method for Network-on-Chip models. The 
verification capability incorporates exhaustive model checking to verify model properties (based on system 
requirements). We propose using the DEVS modeling method by extending it to support verification 
through specifying model states and I/O properties and introducing a model-checker to the DEVS-Suite 
simulator.  

This paper is organized as follows. We discuss the background on model checking, DEVS, and verifiable 
versions of DEVS in Section 2. In Section 3, we closely examine related previous works on model checking 
and NoC verification. In Section 4, we introduced our approach toward constrained modeling and 
verification protocol. In Section 5, we present a simple model of a router verified in terms of state 
reachability under constrained state and I/O configurations. Finally, in Section 6, we summarize this 
research and discuss some future work.  

2 BACKGROUND 

Discrete EVent System Specification (DEVS) is a formalism for specifying modular, hierarchical coupled 
models composed of atomic models. Parallel atomic DEVS is a tuple defined as 

 in which X and Y are input and output sets, S is the state set,  is 
the internal transition function,  is the external transition function (with  being the set of 
total states),  is the confluent transition function,  is the output function, and 

 is the time advance function.  

Formal model checking aims at determining whether a model of a system meets certain requirements. 
Theorem-proving approaches for mathematically proving/disproving a certain property for a certain model 
is undecidable and generally restrictive (Halpern and Vardi 1991). Therefore, exhaustive model checking 
is usually used for critical systems as a full-proof method of verification. State explosion problem is a 
common issue when model checking is applied to a complex model. However, the use of model checking 
method is not entirely abandoned. In particular, for a safety critical system, model checking is still necessary 
for exploring some parts of the entire state space of the system’s model.  

Model checking of hardware systems corresponds to the reachability graph as one can convert the state 
space to a directed graph with nodes corresponding to states and edges to state transitions. Formal modeling 
approaches such as Timed Automata (Alur and Dill 1994) and Petri net (Peterson 1981) can be verified 
exhaustively as they correspond to a finite state machine. As for DEVS, because of the continuity of time 
for external input events and state transitions, the state space is unbounded. DEVS-based models, as 
normally specified, are well suited for simulation purposes. However, model-checking algorithms require 
bounded state space in order to iterate through all possible states and state transitions. 

For example, consider the model of a stack that can store up to eight natural numbers at any given time (see 
Listing 1). The input port “in” is used to inserting numbers into the stack while the input port “out” is used 
for removing the numbers. The output port “pop” is used for requesting an output. This port is used to send 
output an already stored number (if any). If the stack is empty, no output will be sent. Similarly, if a number 
is received in input port “in” when the stack is full, the number is ignored. We assume whenever a signal 
is received in the input port “pop”, the model outputs a stored number after a finite time period, . 

This stack model has input  and output . The state of the model  consists of phase, sigma, buffer, index, 
and the popped number. The phase is only “active” when the pop signal is received. In phase active, the 
output is the popped number and thereafter the phase is set to “idle”. The  defines receiving new entries 
from input port “in”. When an external event is received with some elapsed time  
and the stack is not full then the input value is put into the array, otherwise it is ignored and sigma is updated 
by . Similarly, another  is defined for the case a pop signal is received. In this scenario, if the stack is 
not empty, the value of the popped state variable is set to the value from top of stack for transmission. After 

, the popped number is sent out and then the state is updated as defined in . 
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This Stack model exemplifies the unsuitability of the DEVS formalism for model checking if the index state 
variable is unbounded (i.e., the index can be any number between zero and infinity inclusive). However, 
we are well aware of the fact that this stack can store at most eight values, which constrains the value of 
index to a number between zero and seven. The general DEVS formalism does not place any constraint on 
the range of values any of its state variables can have. In particular, the total state  is infinite because input 
events can arrive at any instance of time even if every other state variable is restricted to have a finite range 
of values (i.e., the state space cardinalities for atomic, and therefore coupled, models are infinite). 
 

Listing 1: A Simple Stack Model  

,    ,                   

if 
if 

                     

if 
if 

            

                                                        

                                                                               
 

However, constrained versions of DEVS are introduced to make the cardinality of state space finite. There 
have been previous efforts such as FD-DEVS (Hwang and Zeigler 2009) for supporting model checking. 
Although this approach is useful, it has two shortcomings as described below.  

2.1.1 Support for Non-determinism and Stochasticity 
DEVS formalism has comprehensive support for both deterministic and non-deterministic systems. In a 
non-deterministic model, several transitions could be possible for a set of internal/external events. Non-
determinism adds a large number of possibilities to the state space. Similar to non-determinism, 
stochasticity is another obstacle toward model checking. The randomness for choosing one transition 
among many, as defined in FP-DEVS, can also increase the state space of a model. One can reduce the 
stochasticity of the system by removing randomness.  

In P-DEVS, internal and external transition functions are deterministic. However, non-determinism exists 
for external inputs. External inputs may be injected at any instance of time. This is the most obvious form 
of non-determinism in DEVS. We believe non-determinism support in a model checking engine is 
important. This leads to support for a wider range of real systems.  

2.1.2 Limited Property Checking 
Models are verified against properties defined by the modeler. In most model checking environments, a 
formal language encodes the desired properties of the systems. Examples are Timed Computation Tree 
Logic (Alur, Courcoubetis and Dill 1993) in UPPAAL (Larsen, Pettersson and Yi 1997) or DEVS Natural 
Language (DNL) in MS4 Me (Seo, Zeigler and Coop, et al. 2013). Inventing a language or using a time-
based logic are common ways for encoding properties. However, these methods have their own limitations. 
It can be challenging to encode a complex property in these formal languages. As an example, encoding 
the reachability problem, may not be so difficult as it deals with the collective state of the system which is 
already formally modeled. However, what if one needs to verify whether all flits in a Network-on-a-Chip 
can be delivered within some time window (satisfying a predefined QoS)? In these cases, formal languages 
such as LTL are helpless.  
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3 RELATED WORK 

3.1 Model Checking 

Numerous modeling methods are introduced with support for model checking. Among the two popular ones 
are variants of Timed Automata and Petri nets. A variant of Timed Automata with UPPALL is a popular 
toolset for model checking. UPPAAL provides great features such as Java programming (within each state), 
global time, and property checking using process algebra. UPPAAL uses a simplified version of Timed 
Computation Tree Logic (TCTL) (Alur, Courcoubetis and Dill 1993) as its language for property 
expressions.  

Petri nets (Peterson 1981) is a modeling language capable of describing distributed systems. A Petri net is 
made up of places, arcs, and transitions. This mathematical modeling language supports verifying deadlock 
and liveness properties. There are many extensions to the original Petri nets modeling language, some of 
which are more expressive (Bouyer, Haddad and Reynier 2008). Since there were no equivalency 
relationship between any variant of Petri net and Timed Automata, the bounded Read Arc Timed Petri net 
capable of checking the presence of tokens without consuming them was developed (Bouyer, Haddad and 
Reynier 2008). This variant of Petri net is computationally equal to Timed Automata. A Petri net is k-
bounded if there exists a number k, which is the maximum number of tokens a place can have.  

Both Petri nets and Time Automata are widely used to model and verify concurrent real-time systems. One 
downside, which both Timed Automata and Petri nets share, is their inability to handle complex data types. 
Timed Automata supports the exchange of simple signals and Petri nets can only operate using tokens. For 
example, a model of a network may require packets (as objects) to be exchanged between model 
components. In addition, both Petri nets and Timed Automata only support modeling the behavior of the 
system. DEVS on the other hand supports both structural and behavioral modeling of concurrent systems.  

3.1.1 DEVS-based Model Checking  
A variant of DEVS called Finite-Deterministic DEVS (FD-DEVS) is introduced to support model checking 
(Hwang and Zeigler 2009). It allows for finite state/event sets, rational or infinity state lifespans, and next-
state scheduling. In spite of the FD-DEVS safety and liveness being decidable, non-determinism for internal 
transition, external transition, and advance functions are not accounted for. Many engineered and natural 
systems such as Networks-on-Chips are inherently non-deterministic. In addition, as mentioned earlier, 
arbitrary property checking is not possible through FD-DEVS. 

An approach looks at FD-DEVS as the target for model checking. In (Pasqua, et al. 2012) the authors 
introduce an approach where UML sequence diagram models are transformed to FD-DEVS models. They 
create meta models for both FD-DEVS and sequence diagrams to automate the transformation. In addition, 
they incorporate linear temporal logic (LTL) to specify undesired traces. This method can bring simulation 
and model checking to UML sequence diagrams (after transformation). However, it is still subject to the 
limitations noted earlier for FD-DEVS.   

In (Saadawi and Wainer 2011) the authors introduce Rational Time-Advance DEVS (RTA-DEVS) in which 
only rational values are allowed for time advance function . RTA-DEVS introduces a graph-based 
representation. The authors provide a method for manually converting RTA-DEVS models to Timed 
Automata. Models that are converted to Timed Automata are limited with respect to the data they can 
communicate. Finite Probabilistic DEVS (FP-DEVS) (Seo, Zeigler and Kim, et al. 2015) is an extension of 
FD-DEVS in which the choice of next state is made probabilistically.  

3.2 NoC Verification 

There have been previous efforts on formal verification of network-on-chips. Some of these approaches 
work based on external model checker engines. In (Salaun, et al. 2007), the authors suggest a formal 
verification method for asynchronous architecture based on automatic translation from CHP to LOTOS 
(process algebra in CADP toolbox). Their method of model checking checks for deadlock freedom and 
protocol correctness. GeNoC (Schmaltz and Borrione 2008) creates a meta-model of the NoC and then uses 
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ACL2 theorem prover to prove whether data is correctly routed and reaches the intended destination. In 
(Roychoudhury, Mitra and Karri 2003) the authors use SVM symbolic model checker to verify and debug 
Advanced Micro-controller Bus Architecture (AMBA). Their approach is limited to starvation. 

Other approaches have incorporated standard modeling method with wide range support. In (Taktak, 
Desbarbieux and Encrenaz 2008), the authors make use of graph theory and the concept of Strongly 
Connected Components (SCC) in order to develop an automatic deadlock detection mechanism for NoC. 
Performance evaluation using previously known link loads and deterministic tasks has been suggested in 
(Goossens, et al. 2005). They used VHDL and XML in order to configure and generate the NoC model. 
Performance verification is of utmost importance when designing a system with hard performance 
requirements. Although the approach suggested in (Goossens, et al. 2005) is simplistic due to the assumed 
determinism, it is important that we consider this approach and expand on it in order to bring forth more 
comprehensive performance verification methods. In another approach, Petri nets were used to verify 
routing and switching policies in NoC (Bazzaz, et al. 2009).  

4 APPROACH 

Model verification in DEVS entails adding four additional features to the DEVS M&S framework: 1) state 
configuration, 2) input port configuration, 3) discretized time for external inputs, and 4) verification 
protocol. The first three are required to constrain state space. In addition to these features, we discuss two 
additional features which we view to be important for developing the verification protocol for the 
constrained DEVS-Suite model checking engine. One for data exclusion, which further reduces the state 
space size and another for functional requirements of the system. These are defined in models and checked 
for by the verification engine. 

4.1 State Configuration  

As we elaborated in the simple stack example in Section 2, the unconstrained DEVS specification does not 
lend itself to model checking. A verification engine needs to know about the value set of each state variable. 
We introduce value constrains to state variables. The verification protocol can leverage these constrained 
state variables for model verification.  

State variables can be Primitive or Compound. A primitive state variable can only be of certain types 
including Character, Integer, and Boolean. Compound states are any combination of primitive states. We 
use regular expressions to define compound state variables. As an example, consider a queue of size 8 that 
can hold strings (each of size 24). The specification is as follows. 

Primitive state 1:   
Compound state 1: String:  
Compound state 2: Queue:  

The expression for the primitive state 1 is for one character of a string. In the Java programming language, 
the type of the primitive state variable is Char. Each cell of the queue can hold a string of size 24. The 
second equation formulates the state variable of a string of size 24 using a regular expression. Finally, the 
third equation is the compound state of the queue holding 8 strings of size 24.  

The verifier can easily calculate the number of states for the queue state space and iterate through all of 
them. However, for atomic DEVS model, state variables are not the only elements that form the state space. 
The number of ports and time granularity also affect the state space size.  

4.2 Port Configuration 

Similar to state variables, ports require accurate specifications for their types and value sets. However, not 
all ports require bounded specification. Only the external input ports require such specification. Internal 
couplings and external outputs do not define port types. They define source/destination model components 
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and their corresponding ports. The reason for this is that the internal couplings are between atomic/coupled 
models. These ports are driven by their source models. The model-checking engine, can only manipulate 
the external inputs in order to iterate the entire state space.  

The method introduced for bounded state configuration can be applied here for bounded port configuration 
as well. Value sets for these ports can also be specified via regular expressions. In the specification of input 
ports, an additional NULL ( ) value is always needed for all cycles that the port carries no data. Therefore, 
for an input port of type string (of size 5), the regular expression defining it will be . Couplings 
can transfer primitive or compound data.  

Considering 127 possible values (not null values) for Char, the number of possible combinations of input 
(possible number of events) is . For reachability analysis, the verification engine should apply all 
possible combinations of events to all reachable combinations of state variables.  

4.3 Finite Number of Internal/External Events 

For discrete event system specification, the time advance function is continuous. An external input event 
can happen at any instance of time. This can result in having an infinite number of external events and 
therefore an unbounded state space. In order to have a bounded state space, we define time as a discrete 
function for external inputs. Internal events, they are finite if the time advance is restricted to have a finite 
number of values as well as satisfying finiteness on all other variables that form the state space.  

The receipt of external input events should become discrete to limit the number of transitions from each 
state. Otherwise, there will be infinite number of transitions from each state of the model as external inputs 
can be received at any time. Similarly, the number of internal transitions should be finite; otherwise, the 
state space will be again infinite. So, modeling the Time Advance function as a random function from state 
to rational numbers set is considered not verifiable. 

4.4 Model Checking Algorithm 

Beside constraining the state space of models, a verification engine is also required. The verification 
algorithm introduced here can be applied to both atomic and coupled models. In constrained modeling of 
any coupled model, its state is the collective state of the atomic/coupled models inside it and the bounded 
definition of ports remains the same.  

The verification engine is in charge of the model checking activity. In order to verify a model entirely, the 
verifier should visit all states and all its state transitions. Transitions could be the result internal/external 
transitions within one or several components. The verifier holds two data structures for visited states and 
unvisited states. Unvisited states are those which the verification engine should iterate on since some of the 
transitions related to those states are not explored yet. The visited states are those whose transitions are 
explored entirely. For safety analysis, another data structure for unsafe states is instantiated and initialized 
by the user.  

The model-checking algorithm for safety analysis of a verifiable DEVS model is given in Algorithm 1. It 
receives the model (MOD) and the generator (GEN) as inputs. The generator (GEN) provides all possible 
combinations of inputs that are to be injected to the model (MOD). The output for the algorithm is an invalid 
state if one is found during the exploration of state space, otherwise the model is safe and the algorithm 
returns null. There are three sets (all three of type Hash) for keeping the toBeVisited (Q), visited (V), and 
Unsafe states (U).  In steps 1 and 2, initial states and unsafe states are added to the toBeVisited state and 
the unsafe state sets, respectively. Obviously, at initialization, the initial state(s) is the only state to be visited 
so they are added to the toBeVisited state set. A while loop goes through all reachable states (stored in 
toBeVisited state set). Steps 4 through 17 are repeated as long as the toBeVisited state set is nonempty. At 
each cycle of the loop, one state is chosen (step 4) and all possible inputs are applied to it (steps 5-16). 
Another while loop is responsible for applying all possible input values to the current state (i.e., state-event). 
Since the value set for input ports are constrained, the engine can determine and apply every input value to 



Gholami and Sarjoughian 

the model. After setting the state of the model and giving the inputs to the GEN in steps 6 and 7, the 
simulator is called which simulates the model for one cycle. The resulting state is checked against the unsafe 
state set (steps 9-12). If the resulting state is an unsafe state, the algorithm terminates and alerts the user of 
the unsafe state, the source state, and the input that caused it. Otherwise, in steps 13-15, if the resulting state 
is not seen before, it is added to the toBeVisited state set. In line 17, after all the inputs are applied to the 
current state, it is added to the visited state set and the algorithm moves on to the next state.   
 

Algorithm 1: Model Checking Algorithm for Safety Analysis of Constrained DEVS Models  

Input: MOD: Verifiable, GEN: VerifierGen 

Output: invalidState: StateVar 

Initialization: instantiate Q, V, and U ; invalidState  null 

1: add MOD.initialStates to Q 
2: add MOD.unsafeStates to U 
3: while Q   do 
4:       state-event  Q.head ( ) 
5:       while state-event.inputSet   do   
6:              MOD.state  state-event.state 
7:              GEN.output  state-event.inputSet.head ( ) 
8:              call simulate ( ) 
9:              if MOD.state  U then 
10:                      invalidState  MOD.state 
11:                      return invalidState 
12:              end if 
13:              if MOD.state  Q  MOD.state  V then 
14:                      add MOD.state to Q    
15:              end if 
16:       end while 
17:       add state-event to V 
18: end while 
19: return invalidState 

4.5 Data Exclusion 

In most systems that process, communicate, or store data, the state space is especially bigger because of all 
the state variables added by data. Going back to the stack example in Section 2, the data stored in the stack 
increases the state space by a large factor. Assuming the numbers that can be stored in the stack could only 
be between 0 and 9, the state space is multiplied by a factor of . This could prove problematic for 
verification.  

In some systems verifying the operation of the system, the specifics of data may not be needed. In the case 
of Network-on-Chip, the data is only communicated and not at all modified in the network. Therefore, 
keeping the data in the flits as a part of state variables (in queues, links, etc.) is not necessary. This suggests 
storing data as state variables for model verification; the data can still be used for model validation.  

The process of removing data from verification is simple. In our constrained DEVS modeling approach, 
each state variable marks those variables that belong to the state space. In the case of flits, we consider 
source and destination nodes as part of the state space by excluding the specifics of the data that is 
communicated within the NoC. The data can be used by simulation engine but the verification engine 
ignores the data permutations for constructing state space. 

4.6 Property Expressions 

The aim of modeling checking is to check the validity of certain dynamic properties of models. These 
properties are related to various characteristics of the system, such as satisfying performance requirements 
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or prevent certain state transitions. One problem, however, is how these properties are expressed for the 
model checking engine to process. There are specific languages for property expressions such as TCTL.  

The other way is to use data collectors. What we offer is the Experimental Frame (EF) (Rozenblit 1991). 
The EF brings the concept of experimentation and measurement into the model by adding several 
components to the model of the system (generator and transducer). Therefore, experimentation and 
measurement become parts of the model and not separate concepts. We use Java to implement EF in the 
DEVS-Suite simulator that gives the modeler (designer) flexibility and support for creating experiments 
and calculating measurements based on the states of models.  

In the proposed model-checking framework, the generator inject various combinations of inputs to the 
model and the transducers are charged with the task of gathering data from the model. These transducers 
can collect state data as well as data derived from states and check them against some desired properties. 
The modeler can specify and implement complex state-based properties using programming languages such 
as Java. Properties can include performance measures (maximum waiting time, average latency, etc.) that 
can be checked for network systems for specified time instances and intervals. For example, for measuring 
the total delay of flits or the distribution of flit traffic, one or more transducers can have separate calculations 
to gather the needed data and determine whether the measured data satisfy their expected values.  

4.7 DEVS-Suite Simulator Extension  

The DEVS-Suite simulator does not provide built-in constructs to constrain state variables for atomic 
models (ACIMS 2016). An atomic model is a class inherited from the ViewableAtomic class. Any attribute 
defined for any atomic model can be considered as its state variable. A variable type can be primitive (e.g., 
int, float, and double) or compound (e.g., String, Map, List, and user-defined). Although any of these data 
types are commonly used for simulation, they need to be constrained and identifiable for model checking. 
For the model checking engine to work, it must be able to extract all the state variables and their values to 
be used for verifying allowed state transitions.  

 

Figure 1: Partial UML diagram of DEVS-Suite modeling class structure. 

The DEVS-Suite simulator framework is extended to support specifying constrained atomic DEVS models 
as well as executing them according to the model checking algorithm 1 (see sub-section 4.4). The challenge 
is to add the model checking capability to the framework while keeping the simulation capabilities intact. 
With both of these features at our disposal, the user can use a constrained DEVS model for both model 
checking and simulation. A class diagram is depicted in Figure 1. We created the VerifiableAtomic class as 
a child class of ViewableAtomic. This class has a single instance of a State class for implementing its state. 
The State class holds all state variables (descendants of abstract StateVar class). For each state variable, the 
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user must create an instance of StateVar type. Three possible candidates for state variables are supported: 
IntStateVar, DoubleStateVar, and StringStateVar. These are basic examples but one can create other 
complex state variable classes (for any compound data type) as long as it inherits from the StateVar class 
which adds constraints to state variables. The same idea is used for input ports. We define the concept of 
state for the input ports as well; state of a port is the most recent value they injected into the atomic model. 
The PortState class is the counterpart of the State class for ports; it stores the state for all input/output ports 
(the current value of the port and the set of all possible values for that specific port). A State instance may 
have several instances of the PortState class. 

Each descendant of StateVar class must implement a method for adding valid range of values to the state 
variable. For example, for the IntStateVar class, the addRange method receives minimum and maximum 
values as arguments with other values within these two values added to define a valid set of integer values. 
The method can be called several times for adding valid value sets for each state variable. The 
VerifiableAtomic class has functionality for adding state variables, port values, initial state(s), and unsafe 
state(s). The verification engine requires to know which state(s) to start with and which states are considered 
as unacceptable. During model-checking, whenever the model enters into an unsafe state, the engine alerts 
the user and terminates; otherwise the verification stops if no unsafe state is found after all possible state 
transition paths are traversed to completion.  

5 AN ATOMIC NOC ROUTER MODEL EXAMPLE 

In order to demonstrate how the modeling and implementation of constrained DEVS models are carried out 
for NoC components, we modeled and verified an atomic router model in the DEVS-Suite simulator. A 
switch in NoC contains input/output buffers, virtual channel allocators, routers, crossbar, and switch 
allocator components. Next we consider a router which analyzes the header of each incoming flit and 
determines the output port it should be sent to (via crossbar). 

 

Figure 2: A Mesh switch with its internal components. 

We consider a 5 5 mesh topology. In order to have all possible permutations considered, we verify the 
router in the switch (see Figure 2). In a mesh topology, the switch has four output ports named 0 (for the 
link to the IP), 1 (for the west bound link), 2 (for north bound), 3 (for the east bound link), and 4 (for the 
south bound link). These ports are coupled to links that are in turn coupled with 4 other switches. The switch 
also has an output port for the Intellectual Property (IP). The routing scheme used is called Minimal 
Adaptive Routing (Dally and Towles 2004). It locally optimizes the routing of flits based on the traffic on 
the outgoing links. The router component receives the traffic information via four input ports; each can 
receive flits from a designated link as specified in the NoC mesh. Another input port is dedicated to the flit 
header. The router send a flit on a locally optimized path toward its destination. The state of the router 
component is modeled as shown in the following equation.  
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Traffic on a link is represented by either L (for low congestion), M (for medium congestion), and H (for 
high congestion). The target output port can take 0 (for the link to the IP), 1 (West), 2 (North), 3 (East), and 
4 (South). Upon receiving the traffic info, it is stored in its designated state variable and used for routing 
the current flit and possibly future flits. For simplicity, the flit header only contains the destination 
information.  

The verification engine iterates on all states possible for the router. The input ports for the router can inject 
4 4 4 4 25 combinations of input values. The verification engine automatically instantiates a generator 
(VerifierGenerator) and identifies all possible combinations of its output for the Router (see Figure 3). All 
of these inputs are injected one by one in some order into the router (see Algorithm 1). All outputs of the 
VerifierGenerator are applied to each initial state of the Router to ensure correct functionality in all possible 
combinations of state transitions. The verification engine has built in checks for unsafe state transitions. 
However, for more functional properties a transducer is required (see Figure 3). The Transducer determines 
whether or not the router behavior is satisfying a-priori defined functional properties. 

 

Figure 3: Component view of the router verifier model in the DEVS-Suite simulator 

We created several different scenarios and verified the switch model in DEVS-Suite. For these experiments, 
we used DEVS-Suite 3.0.0 on Java 8. The operating system was Windows 7 Enterprise on an Intel Core i5-
2400 (3.10 GHz) processor and 8 GB of physical memory.  

Table 1: Sample runs of the RouterVerifier model 

Size Routing   
Errors Output State 

Space Size 
No. of   

Iterations 
Execution Period 

(seconds) 
3 3 None All reachable states traversed! 2,560 3,585 3.58 

5 5 
North bound 
output port 

Wrong routing action for: 12 3 
North bound is identified 

-- -- 0.44 

5 5 None All reachable states traversed! 6,400 9,729 5.73 
10 10 None All reachable states traversed! 25,600 38,529 25.47 

 

Some errors (intentionally) introduced in the Router component can be identified and reported by the 
Transducer. As an example, an error is introduced to the Router model. The router forwards a flit to the 
north port instead of the south port. This error was captured and reported by the verification engine. Table 
1 reports four different runs for the router. For each run, the state space size, the number of times the 
verification is iterated, and the execution period for all the verification iterations are measured. These 
experiments are error-free for three different network sizes. The other experiment reports the introduced 
error once it is found and the verification terminates (no information is provided for the state space size and 
the number of iterations quantities). These experiments show the usefulness of verification engine. Before 
components such as Router are simulated along with the rest of the system, it can be verified for correctness.  

.

.
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6 CONCLUSION 

In this work, we presented extensions to both DEVS modeling framework and DEVS-Suite simulation 
engine for model checking with a Network-on-Chip exemplar. Using the constrained DEVS modeling 
method, NoC components are modeled in finite state space. These models are suitable for model checking. 
DEVS-Suite is equipped with a verification engine capable of realizing, simulating, and model checking 
DEVS models such as NoC models. Little is sacrificed for making DEVS models verifiable; to the extent 
that the constraints introduced to prototypical atomic DEVS models do not disrupt their execution as 
standalone simulations in the DEVS-Suite simulator. In addition, non-determinism and stochasticity can 
still be modeled in constrained DEVS and verified. We believe containing both simulation and verification 
of models in frameworks such as DEVS-Suite simulator can greatly reduce development time while 
increasing model reliability.  

As for future work, a DEVS-based multiresolution modeling approach toward developing today’s class of 
complex systems such as NoC may benefit from model verification. A multiresolution modeling approach 
may contain several phases of model development in a single tool as opposed to several. We will explore 
the implications of validation (via simulation) and verification (via model checking) of multiresolution 
models in our future works.  
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