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example, an artificial hand or an artificial forearm, can be controlled specifically. An interesting side effect
when the ENG is used directly is a high probability that the nerve functionality can be preserved from de-
generation in the case of an amputation.
One central aspect of this approach is the minimal-invasive character, simplifying the implantation and it
provides more flexibility with regard to inter- and intra-individual differences. So, the employment of in-
vasive intra-neural sensors (Micera, Citi, Rigosa, Carpaneto, Raspopovic, Pino, Rossini, Yoshida, Denaro,
Dario, and Rossini 2010), (Micera, Carpaneto, and Raspopovic 2010), is in this project not in the focus, but
the identification (Cesqui, Tropea, Micera, and Krebs 2013) of motion-based action potentials is the pro-
posal to realize a smart minimal-invasive solution. To record the very small ENG-signals, which are only
of the order of a few microvolts, we have designed a special front-end hardware/software system realized in
two different prototypes, introduced in (Klinger and Klauke 2013) and (Klinger 2015).
In this paper we focus on a new verification method, taking advantage of a continuous symbiotic system
(Aydt, Turner, Cai, and Low 2008), (Aydt, Turner, Cai, and Low 2009). At first we present the background
application and the used measuring electrode. In the following section we introduce the whole system con-
cept and some applications. Then we compare different verification methods and show several results. This
work continues the former work about system identification presented in (Bohlmann, Klauke, Klinger, and
Szczerbicka 2011), (Bohlmann, Klinger, and Szczerbicka 2009) and (Bohlmann, Klinger, and Szczerbicka
2010).

2 SYSTEM ARCHITECTURE

At first we introduce the used cuff electrode and present subsequently the system architecture.

2.1 The Cuff-Electrode

This type of electrode encloses the neural bundle to be examined. The single electrodes, part of the cuff-
electrode, are inserted in a matrix formed with biomedical silicone. This silicone protects the single elec-
trodes and fix them within the right position. The main advantage of such an electrode is the non-invasive
character. Properly designed this electrode can be used without cutting any nerves within a neural bundle.
In contrast using a sieve electrode the probability of an irreparably damage of the nerves is very high.
The cuff-electrode used in this application is a special cuff-electrode depicted in Figure 1. It consists of
several electrodes organized in rings and segments. In the minimal configuration there are three segments
(120◦) and three rings necessary. The three electrodes depicted there are evenly distributed on the circum-
ference of the cuff (0◦, 120◦, 240◦) to guarantee an uniform coverage of the action potentials triggered by
the neural bundle for example via triangulation. Higher order of rings and segments depends on the space
for the implanted cuff-electrode and the best available precision for electrode manufacturing. The number
of axons of a neural bundle ranges up to several tens of thousands depending on the type of neural bundle
and the selected application localization, like nervus ischiadicus, nervus radialis or nervus medianus.

2.2 System Architecture

The Smart Modular Biosignal Acqusition, Identification and Control System (SMoBAICS), shown in Fig-
ure 2, integrates all necessary tasks (Hazan, Zugaro, and Buzsáki 2006). The biosignal acquisition is done by
the Modular Biosignal Acquisition System (MBASY)-subsystem, the next generation of our own frontend-
hardware/software-system; the first measurement results are described in (Bohlmann, Klauke, and Klinger
2013). The MBASYis redesigned to get a better functionality and to optimize the modular concept. The cen-
tral part of the identification process is integrated in the Biosignal Identification and Control System) (BICS).
It consists of two parts: the machine learning & identification and the prostheses control/stimulation. While
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Figure 2: System overview.

the second part is designed by state-of-the-art technology, the machine learning & identification is composed
of multi-agent-based optimization algorithm and an evolutionary correlation of different types of nerve sig-
nals and of additional information like camera positioning or micro-electro-mechanical systems (MEMS).
We introduce this part in more detail in section 3.
Before describing the overall function we have to take one aspect regarding the learning procedure into
consideration. The objective of SMoBAICS is the action potential based control or stimulation of upper or
lower limbs of handicapped human beings. SMoBAICS provides not only a base identification step (learn-
ing phase) but an ongoing supervision (operating phase). Obviously, the operating phase has to be executed
on a small body mounted system but in this paper we do not focus on this system detail.
On the left side a typical application is shown, the cuff electrode is implanted in the upper arm enclosing a
neural bundle. The action potentials are recorded by the MBASY and passed to the BICS (1). Two addi-
tional information streams are used by the BICS for the action potential based identification: a camera-based
motion capturing, used during the learning phase (3), and a motion tracking device at the end effector (e.g.
the hand), used during the operational phase (2). These data streams are important for the identification.

3 IDENTIFICATION & MACHINE LEARNING

The machine learning and identification is the most complex module within SMoBAICS. There are two
different approaches used to check the performance of different methods. In this paper we focus on different
verification approaches, providing a new continuous symbiotic method including machine learning. In
the following sections we introduce both methods; first we introduce the data preprocessing, part of both
methods.

3.1 Data Preprocessing

All real data, recorded from the cuff electrode have to be preprocessed to improve the data conditioning.
The verification data generated from the NEURON-simulator can be used directly.

• Filtering: The recorded action potentials are disturbed by intrinsic noise. In addition these are
overlaid by a substantial extrinsic noise, originated for example by EMG from surrounding muscles.
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Therefore we have to filter the recorded data with integrated analogue filter and additional digital
filter.

• Re-sampling: The recorded data has two main weaknesses: The samples are asynchronous and
aperiodic. In order to get a time series of data samples we perform the following steps:

– Interpolation and FIR Filter (finite impulse response)
For each sequence we interpolate the given values and smooth the result with a convolution.

– Error Correction
The interpolated data is equalized with the original samples gained from the Data Factory.

– Down-sampling
We pick Euclidean equidistant samples from each sequence and combine them to data samples
with a time-stamp.

During the machine process the data samples will not stay in their chronological ordering. To be able
to perform time derivation, it is necessary to save the chronological neighbors for each sample. The
resulting time series of equidistant data samples p consists of a time-stamp ptime, a vector pdata =
[pout, pin], with pout ∈ R and pin ∈ Rm, containing the output and input data and its chronological
neighbors ppre and ppost. With P we denote the set of all such data samples. Furthermore we define
the delta value p∆

in ∈ R with

(p∆
in) :=

1
2

(
(pin)− (ppre

in )

ptime − ppre
time

+
(pin)− (ppost
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3.2 Identification via Agent-based Curve Fitting

We use an agent based algorithm to reconstruct the nerve signals, measured with the cuff-electrode. More-
over we can assign certain clusters in the neural bundle to muscle groups and the corresponding receptors.
The algorithm is subdivided into three levels, which are described below.

• First-Level
At the entry level software agents are used to build partial solutions. Every agent has a relatively
small scope of data, the size of this data scope is automatically adapted to the extent of paralleliza-
tion. The task of each agent is the approximation of the data in its scope using its own parameter
set containing an action potential template, which takes the physiological restrictions into account,
and a model of the neural bundle as well as one of the cuff-electrode. Essentially three decisions are
necessary to build a partial solution. For a given piece of input data the agent has to decide which
axons where activated (spatial allocation), when it was activated (temporal allocation) and whether
it was an actuatory or a reactuatory signal (directional allocation).

• Second-Level
In this algorithm level the partial solutions found by the software agents in the first level are com-
bined to global solutions. The combination to global solutions is done parallelized by Global
Solution Builders (GSB). The agents in the first level are permanently sending new partial solu-
tions for different sections of the input data. Once the whole data set is covered by partial solutions
a GSB starts to combine them to a global solution, while the remaining GSBs continue to receive
partial solutions. The main task of a GSB is to combine these parameter sets, such that the overall
error stays as small as possible.

• Third-Level
In this level the causal verification of the global solutions takes place. This is done by the Global
Solution Tester (GST). So far the solutions were only evaluated according to the pure approximation
error. But there are more criterion already to achieve good solutions. The first one is the causal
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relationship between actuatory or reactuatory signals. The second criterion is the error with respect
to the data from the camera and the MEMS using inverse kinematics. The action potentials from the
neural bundle including motor and sensory axons have to be correlated with the results of the inverse
kinematics.

3.3 Identification via Machine Learning based on Continuous Symbiotic System

The machine learning is based on evolutionary algorithms – a generic population-based metaheuristic op-
timization algorithm inspired by biological evolution (De Jong 2006) – embedded in a multi-stage and
multi-agent implementation, shown in Figure 3. The planet structure models the environment for the popu-
lations inside the evolutionary algorithm. Every planet provides a data field, the software agents can operate
on. The number of planets is scalable, the current predetermined size is n = 94 = 6561. Using a multipro-
cessor system, the number of planets have to be multiplied by the number of cores. Data acquired from the
process connection are preprocessed, equal to the filling of the planet structure. The preprocessing consists
of several steps to guarantee a high average information content of the data, so called data entropy. One
step is an appropriate data preprocessing, described in principle in subsection 3.1. One further step is the
data filling. This last step of the data preprocessing arranges the data samples on a 2D surface of a so-called
planet. The surface of the planets is built in a recursive pattern of squares containing nine elements, filled
meander like. This method leads to the planet size 94. This arrangement has the advantage, that the data set
used for the local optimization consists of data samples, which may be spread more widely across the input
sequences.

In the central part of figure 3 the agent factory, the model library and the 2-step optimization, dedicated
to every planet, is shown. The agents have 4 essential features: an age, an energy level, an area and their
model function, approximating the corresponding process function. Moreover a replication mechanism is
implemented, meaning the agents are able to produce a child and put it on an area. The age and the energy
level are increased after each iteration. All operations an agent can perform, have an energy effort, by which
the energy level is lowered, if the operation is executed. Furthermore the agents have the ability to learn
from their local data and improve their model function by executing different evolutionary operations to
change the structure of the model function and a local optimization algorithm to calibrate the parameters.
In each iteration the software agents perform the following operations: Calculate Fitness, Move, Local
Optimization, Evolutionary Operation and Nomination (The agents elect a few individuals with the highest
fitness values and age on each planet to form an Elite Population). The Evolutionary Operation consists of

• Mutation: The agents model function gets changed randomly: Either a sub-tree of the model function
is exchanged or new operations are inserted.

• Crossover: When an agent moves it may happen that the chosen area is already occupied with an-
other individual. In this case, a sub-tree of the individuals model function is replaced by a randomly
chosen, suitable sub-tree of the other agents model function.

• Replication: The agent duplicates himself.
• Global Optimization: The agents, which own enough energy or are not adult yet, optimize the

parameters of their model function in the Memetic Coprocessor, explained below.

The global optimization is realized on memetic coprocessors, running on an extra processor core, executing
more sophisticated algorithms for a global optimization. In the current configuration we use a downhill-
simplex algorithm (Nelder and Mead 1965). The algorithm chosen for this local parameter optimization is
resource-saving, because it is executed for all agents in every iteration.
The machine learning provides the capability of running the evolutionary algorithm described above on sev-
eral planets at the same time. If this is the case, some of the areas on each planet get marked as so called
beam areas. After each iteration copies of all individuals placed on such an area are send to a randomly
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Figure 3: The architeture of the machine learning.
Figure 4: Symbiotic Loop.

chosen area on a randomly chosen planet, provided the chosen area is not yet occupied by an agent. In the
experiments 100 of the 6561 areas on every planet were marked as beam areas. Our implementation asso-
ciates each planet to one processor core, on an additional processor core a universe supervisor is executed.
This supervisor manages the elite population using the data from all planets and controls the termination
condition. The information exchange between the cores is implemented via a non-blocking Message Pass-
ing Interface.

4 VERIFICATION APPROACHES

The verification block confirms the quality of the model and is an essential part, it helps to evaluate the
model which is improved or build up during identification process. The verification strategy is based on a
set of process input sequences ((x1)t , . . . ,(xm)t , t ∈ N) and output sequences ((y1)t , . . . ,(y j)t , t ∈ N) and of
the simulation output sequences ((z1)t , . . . ,(z j)t , t ∈ N). The output sequences of the simulator are related
to the input sequences by functional relationships f : Rm → R j.In principle, the verification method can be
executed with synthetic data (generated by a model of the evaluated system) or live data (acquired from the
physical process). We first focus on the synthetic data verification.
The Curve Fitting, introduced in subsection 3.2 provides an open loop verification, which is not able to
start the verification process without an initial model. Furthermore, this open loop verification is not able
to control the verification process to increase the quality of the model. Precisely for this reason, we have
designed a closed-loop verification process, the symbiotic loop, shown in Figure 4.

The system architecture follows the paradigm of the symbiotic loop, shown in figure 4 and it is based on the
machine learning, introduced in subsection 3.3. Five modules form this symbiotic cycle which is application
independent, the additional modules are described in the following.

Process The process block covers all physical relations of the considered process. Analog inputs or
outputs have to be transformed using analog-to-digital- or digital-to-analog-converters. The interface to
the digital in-/out-signals is handled using the process data streaming protocol (PDSP) managing distributed
process data flows (Bohlmann, Klinger, Szczerbicka, and Becker 2010). This protocol is designed to be used
in mixed continuous and discrete environments (Zeigler, Praehofer, and Kim 2000) referred to as hybrid.
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Focusing on symbiotic simulation (Fujimoto, Lunceford, Page, and Uhrmacher 2002), PDSP is primary
designed to satisfy four modes of operation (analytic, transparent, online, prediction); here we focus on
the online mode. In this mode PDSP is used to simulate a process and transmit the results back to the
process. The data is directly transmitted between the physical process and the simulator. Therefore latency
is minimized although proxy servers may be necessary for large scale simulations.

Simulator In the simulator block we are using two different approaches, dependent from the application.
For general purpose it is a Java based simulation system specifically designed for high speed online and sym-
biotic simulations. The simulator especially has online compiling capabilities, e.g. models can be compiled
during run-time in memory and then dynamically injected to the simulator. It is capable to dynamically load
or receive models (basically any kind of java program) and simulate multiple isolated instances in the same
memory/thread context. The simulator combines Java class loading mechanism and byte code enhancing to
calculate user defined metrics while processing prior structural unknown models on the fly. In combination
with an OSGI framework PDSP can be directly embedded to running simulations.
For the specific application of ENG-based identification we are using currently the well established NEU-
RON framework for empirically-based simulations of neurons and networks of neurons (Carnevale and
Hines 2006), (Coates, Larson-Prior, Wolpert, and Prior 2003), (Law and Kelton 2000). The different con-
straints, like myelin structures, all-or-none, two directions of information flow, frequency borders of the
action potentials, etc. has been taken into account. We have configured the simulator and realized a complex
neural bundle including our cuff electrode setup to generate verification data for several information trans-
fer scenarios. The action potentials used for the NEURON-simulator are derived by human arm modeling
via Matlab Robotics Toolbox (Corke 2011). With this model for verification we are able to concentrate on
specific muscle groups and their reactuatory answer and therefore we are able to generate verification pat-
tern. The simulation environment uses the Hodgkin-Huxley model (Hodgkin and Huxley 1952) to simulate
the axon internal membrane, the ion-channels and the extra-cellular space. So, the propagation of action
potentials along the axons is modeled using these equations. Furthermore, the mechanisms concerning the
passive membrane channels are included.

Process Model The area provides data samples to learn from and calculate the error of the model function
(Rm → R) is stored in a tree representation. This function is composed of elementary operations (Schmidt
and Lipson 2007), like +,−,∗,/,sin,sqrt the variables x1, . . . ,xm and a set of parameters within their model
function.

According the multi-agent capability, there are several models existing. The number of currently active
agents and their inner candidate function is regulated by a software PID control. It is programmed to use the
available processing power in nearly optimal conditions. The best models are picked according their ability
to survive multiple times longer than the mean agent population. This metric corresponds to the selection
of the fittest agents. The complexity of the process models is either dynamic. It depends on the number
of input variables, constants and operations. The complexity is defined by counting the number of nodes
in the tree representations. The differences between both verification methods are illustrated in Figure 5.
The open-loop method allows a verification of the potential-level (electrode-data) against the command-
level (Stim-Pattern). It is not able to generate new adequate verification pattern to improve the quality
of the model behavior according to specific system states. The new method including the symbiotic loop
integrates the verification in a complex and interactive exchange of data between physical process, process
model, machine learning and the simulator. The closed-loop verification provides a verification between the
trajectory level and the command-level, including the potential-level. The identification block controls the
generation of trajectory-related Stim-Pattern.
To create a symbiotic online learning environment all data from the physical process is streamed via PDSP
to and from a central routing software. Machine learning and the massive parallel simulation are running
outside the roots real time domain. The control simulation, which is using the currently best known model,
is running inside an embedded system in real time. Communication between the two domains basically
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Figure 5: Open- and closed-loop verification.

consists of a model transmission and a movement direction proposal directed into the real time domain.
Data transmission directed to the machine learning, verification and simulation is a set of streamed time
series data.

5 RESULTS

In order to validate the identification procedure proposed in this paper, we present here one scenario based
on the movement of the forearm and the hand where the generation of the Stim-Pattern is focused on the
movement of the forearm. The resulting time series of simulated extracellular recordings are fed to the
identification algorithm.
The sequence of signals is transformed into actions potentials and simulated by the NEURON simulator
using the axon bundle configuration and the cuff electrode setup. The data acquired by this simulated cuff
electrode is shown in figure 6. In this figure the frequency of the action potentials and their signal amplitudes,
caused by the superposition of several actions potentials, is shown.

Figure 7 shows some details from the overall signal sequence in figure 6. it shows the simulated data for
three adjacent rings of the cuff electrode. The three time series are different because of the superposition of
actuatory and reactuatory signals during the zoomed time period.

Figure 8 shows a set of Action Potentials (grey, input data from the cuff-electrode) and its approximation
(red) executed by the first-level algorithm of the Curve-Fitting method. The time period between 2600-
2800 ms shows the superposition of several action potentials which are not in phase. This time period is
zoomed in Figure 9 to show the superposition in more detail.
The dashed curves are single action potentials located on different axons. The superposition of these both
action potentials forms the red curve based on the action potential characteristics, we call action potential
templates (amplitude, frequency, refraction period, etc.).

In the figures 10 and 11 two additional aspects of the identification process are shown. Here the identification
method is using only the data acquired by the cuff electrode, no additional information. In Figure 10 the
detection of the direction to identify actuatory and reactuatory signals is shown, based on the Stim-Pattern,
generated from the Matlab Robotics Toolbox. In Figure 11 the cluster assignment, identifying the actuatory
feedback fascicles, are shown.
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Figure 6: Cuff-electrode data and approximation. Figure 7: Cuff-electrode data and approximation.
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Figure 8: Cuff-electrode data and approximation.
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Figure 9: Cuff-electrode data and approximation.

6 SUMMARY AND FURTHER WORK

The SMoBAICS acquisition system motion-based action potentials in neural bundles for exo-prostheses
control or for handicapped limb simulation provides a integrated solution from action potential recording up
to the identification procedure. This paper focuses on two different verification methods, providing a open-
or closed-loop approach. While the open-loop approach helps to identify well-known processes, improving
the overall model quality, the open-loop approach, using the symbiotic loop, helps to generate a physical
process model from scratch.
A continuous symbiotic system was presented, where different modules, like machine learning, simula-
tor and process models are interacting with a physical or technical process. It improves the identification
progress and opens the symbiotic simulation to applications from biotechnology.

The further work has the following key aspects:

• Evaluating the high performance Java simulator instead of the application-specific Neuron simulator.
• Evaluation of the whole identification process, regarding quality and performance.
• Adapting the symbiotic loop to a clinical environment, to replace the Matlab-based part and to

integrate the identification into a learning environment and the concerning applications.
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Figure 10: Restructured action potentials using the identification method and detection of actuatory and
reactuatory action potentials (x-axis: time index [ms], y-axis: [µV].
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