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ABSTRACT 

Model-based engineering is defined as the pragmatic utilization of model-based practices, namely, 
modeling, metamodeling and model transformations in various steps of engineering. In the last decade, 
the simulation of technical systems has leveraged graphical modeling and model-to-text transformations, 
but metamodeling and model transformation practices have not become widely accessible. Thereby, the 
benefits of employed model-driven approaches have been limited. System Entity Structures are directed 
labelled graphs that were proposed in the 1980s for specifying a family of system configurations for 
modular and hierarchical systems. The System Entity Structure and Model Base (SES/MB) framework 
combines the SES ontology with the classical workflow of modeling for an interactive or automatic 
generation of executable simulation models. After reviewing comparable approaches in software 
engineering, this paper discusses the application of SES/MB framework for metamodeling and model 
transformations for model-based engineering of simulations of technical systems. 

Keywords: system entity structures, model-based engineering, metamodeling, model transformations.  

1 INTRODUCTION 

The term technical systems refers to all man-made machines (Hubka and Elder 1998). The evolution of 
technical systems brought us to real-time complex designs that are composed of distributed networked 
heterogeneous physical devices and computational components (Xiao and Fan 2011). This integration of 
computation with the physical processes came along with various challenges (Lee 2008). Their design 
became a demanding task which employs mathematical modeling for physical systems and formal 
modeling for computations, simulating these heterogeneous systems, software synthesis, verification, 
validation and testing (Jensen et al. 2011). Using models as core assets for designing, analyzing, verifying 
and validating these complex systems is known as model-based engineering. 
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The models represent the architecture of the systems in terms of the structure of the system components 
and their interfaces, the mathematical or logical relations among them, their evolution over time and the 
rules that govern their design (Tolk and Hughes 2014). The simulation is then described as the execution 
of the system architecture models that is an essential element of model-based engineering which enables 
analyses in order to address measures of performance. As the system complexity increases, the simulation 
also becomes so complex that we ought to assess it not only as a tool for engineering a system but also a 
system that requires engineering. Accordingly, model-driven practices, namely, modeling, metamodeling 
and model transformations are perfectly applicable at various steps of engineering simulations for 
technical systems. Although there are many academic examples of model-driven practices in engineering 
of simulation systems in various domains, their industrial adoption in simulation of technical systems is 
not wide spread. Despite the fact that graphical modeling and model-to-text transformations are well-
employed, metamodeling and model transformation practices have not become readily accessible. One of 
the root causes that hinder such accessibility is that current approaches derive from software engineering 
and are not compatible with the background of many in the simulation community. Formalisms that are 
endorsed with Meta Object Facility (MOF) (OMG 2015) by Object Management Group and model 
transformation approaches like Query/View/Transformation(QVT) (OMG 2016) are not natural to many 
simulationists with engineering background. 

This paper investigates and discusses the applicability of the System Entity Structure and Model Base 
(SES/MB) framework for metamodeling and model transformations for simulations of technical systems.
In the background, foremost, model-driven practices, namely modeling, metamodeling and model 
transformations will be revisited. Then, a short intensive review of the efforts to utilize metamodeling and 
model transformation in simulation will be presented. Finally, the SES/MB will be explained and it will 
be argued that SES/MB as a model-driven approach will facilitate applications of SES/MB for 
development of simulations in the technical systems domain. In the conclusion section, we will discuss 
the virtues of dissemination of these practices. 

2 BACKGROUND 

2.1 Model-Driven Approaches in Software Engineering 

Model-driven methodology proposes the development of models and generation of executable software 
components through successive model transformations (Gasevic, Djuric and Devedic 2009). The key 
ingredients of model-driven methodologies are modelling languages, metamodels and transformations 
(Brambilla, Cabot and Wimmer 2012). Modelling languages enable the definition of a concrete
representation for a model and metamodels are used to specify modelling languages. Transformations are 
described as the mappings between models which are specified at the metamodel level. 

MOF is the basis of the model-driven integration framework of Object Management Group (OMG) for 
defining, manipulating, and integrating metadata and data (OMG 2015). It provides a meta-metamodel at 
the top level, which is called M3 layer of the four-layer metamodeling hierarchy. This meta-metamodel is 
then used to define more specific metamodels at M2 layer, such as the UML metamodel. The UML 
models that conform to the UML metamodel are at layer M1. Finally, the M0 layer includes the instances 
created from a UML model.  

There are various categorization of model-driven approaches in software intensive systems. Following the 
description from Brambilla, Cabot and Wimmer (2012), Model-Driven Development (MDD) is a 
development paradigm that relies on models as primary artifacts and redefines implementation as
(semi)automatic generation from the models using transformations. Model-Driven Architecture (MDA) is 
then the OMG’s interpretation of MDD. And Model Driven Engineering (MDE) extends MDD to all 
engineering process areas. Model-Based Engineering (MBE) on the other hand is the pragmatic utilization 
of model-driven practices, not necessarily in an integrated fashion, in various steps of the engineering 
process. In this sense, all model-driven approaches can be categorized as model-based. 
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2.2 Model-Driven Approaches in Simulation  

The research in the 1980’s about methodologies for modeling and knowledge representation in simulation 
environments, such as in (Zeigler 1984, Ören, Zeigler, and Elzas1984), can be seen as roots for model-
driven approaches in simulation. Employing model-driven methodologies in simulation in today’s context 
was first discussed by Tolk (2002) when he proposed merging the concepts and ideas of High Level 
Architecture (HLA) into MDA. This position paper claimed that MDA should influence the future of 
modelling and simulation. Various efforts followed this claim and introduced employment of model-
driven practices in MBE of simulation systems. A selection of works that introduced metamodeling and 
model transformations includes de Lara and Vangheluwe (2002) who presented ATOM3, by which they 
supported metamodelling and explicit model transformations for model transformations between different 
formalisms. In 2006 Ozhan and Oguztuzun (2006) published their work in which they use metamodeling 
and model transformations for designing architectures for HLA-based federations based on a conceptual 
model. Based on the early works of the System Entity Structure (SES) and model base (MB) approach, 
Zeigler and Hammonds (2007) published an extended ontology for simulation-based data engineering, 
which was combined with the Discrete Event System Specification (DEVS) and implemented in Java in 
the MS4Me environment (Zeigler and Sarjoughian 2013). In 2008, Topcu et al. proposed the Federation 
Architecture Metamodel (FAMM) (Topcu, Adak and Oguztuzun 2008). Durak, Oguztuzun and Ider 
(2009) proposed their model driven simulation development approach in which they employ model 
transformations from OWL to UML (Ozdikis, Durak, and Oguztuzun 2009) and HLA Object Model 
(Ozdikis, Durak, and Oguztuzun 2010). Later Mittal and Douglass (2011) proposed the utilization of 
model-to-model transformations for generating DEVS Modeling Language from domain specific 
languages.  

D'Ambrogio et al. (2010) came up with their MDD approach to develop DEVS simulations. It was one of 
the earliest attempts that targets a complete model driven simulation development pipeline from systems 
modelling to DEVS/JAVA code through successive (manual and automated) model-to-model and model-
to-text transformations. In 2011, Cetinkaya, Verbraeck and Seck (2011) presented their MDD framework 
for modelling and simulation (MDD4MS) with which they focused on obtaining model continuity 
throughout this life cycle from problem definition to experimentation. 

While previous efforts reported successful employment of metamodeling and model transformations, 
making these approaches available in widely used engineering simulation development environments 
such as MATLAB/Simulink or Scilab/Xcos were not in their scope. In recent efforts Legros et al. (2010) 
employ metamodeling and model transformations to automate the analysis and correction of 
MATLAB/Simulink models according to modeling guidelines. Later, Denil, Mosterman and Vangheluwe 
(2014) augmented MATLAB/Simulink, with rule-based model transformation capabilities for refactoring 
purposes. In 2015, Vanherpen et al. (2015) proposed model transformations for roundtrip engineering. 
Durak (2015a) discussed the accessibility of model transformation approaches to simulationists and 
proposed a transparent toolbox design for Scilab/Xcos, for in-place model-transformation.  

Pawletta et al. (2014) proposed SES/MB as an ontology-assisted modeling approach in 
MATLAB/Simulink with providing a SES toolbox. It proposes an extension to SES/MB and provides an 
approach to compose models using the information from an SES. This effort is then used as a base line 
while developing a model-based testing methodology (Schmidt, Durak, Pawletta 2016). Further, Durak 
(2015b) presented an extension to Knowledge Discovery Metamodel based on SES for enabling reverse 
engineering of legacy simulations, and Durak et al. (2017) introduced an SES based simulation scenario 
development process.  

It is important to mention feature modeling which is a comparable approach to SES/MB. Feature models 
are popular for variant specification (Kang et al. 1990) in software intensive systems domain. They are 
also well-applied to simulation models such as MATLAB/Simulink. Two examples from these efforts are 
Botterweck et al. (2009) and Haber et al. (2013). The application of SES/MB for variability management 
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for MATLAB/Simulink, and in this sense comparing it with feature modeling approach was published by 
Pawletta et al. (2016).  

Standing on the shoulders of previous SES/MB efforts, this paper will propose a MDD approach and 
further recommend SES/MB as an accessible approach for metamodeling and model transformations for 
technical systems simulation domain. 

2.3 System Entity Structure  

System Entity Structure (SES) is one of the many enhancements that has its roots from the system theory-
based approach to modeling and simulation (Oren and Zeigler 2012). It is a high level ontology which 
was introduced for knowledge representation of decomposition, taxonomy and coupling of systems (Kim, 
Lee, Christensen and Zeigler 1990) and since then continuously developed.  

Entity

Specialization

Entity

Aspect

Entity

Multi-Aspect

Entity

Aircraft

physicalDec

Engines Airframe

Engine

engineMultiAsp materialSpec

Aluminium CompositeFigure 1: SES/MB Framework based on (Zeigler, Praehofer and Kim 2000). 

Based on a clear, limited set of axioms, SES possesses four types of elements: Entity, Aspect, 
Specialization and Multi-Aspect. It can be represented as a directed and labelled tree composed of Entity 
and Aspect, Specialization and Multi-Aspect nodes. Entity is an object of interest. Variables can be 
attached to Entities. Aspect denotes the decomposition relationship of an entity while specialization 
represents its taxonomy. Aspects are represented by vertical single lines and Specializations by double 
lines. The Multiple-Aspect is a special kind of Aspect that represents a multiplicity relationship that 
specifies that the parent entity is a composition of multiple entities of the same type. Three vertical lines 
are used to represent Multiple-Aspect relation.  

Uniformity, strict hierarchy, alternating mode, valid brothers, attached variables and inheritance are the 
axioms of SES (Zeigler 1984). Any two nodes with the same labels have isomorphic subtrees according 
to uniformity axiom. Strict hierarchy specifies a constraint that prevents a label from appearing more than 
once down any path of the tree. It is asserted with alternating mode axiom that, if a node is Entity, then 
the successor is either Aspect or Specialization, and vice versa. Valid brothers prevents two brothers from 
having the same label. With attached variables, it is enforced that variable types attached to the same item 
shall have distinct names. Inheritance axiom posits that Specialization inherits all variables and Aspects. 

Pruning is an important concept in SES. It can be described as resolving the choices in Aspect, Multi-
Aspect and Specialization relations and assigning values to the variables. Since multiple Aspect nodes 
may designate alternative decompositions of the system at the same hierarchical level, a particular subset 
can be chosen in pruning based on the modeler’s purpose. Also possible variants of an entity are captured 
by a Specialization. Multiple Specialization nodes may designate families of alternatives in the same 
dimension, e.g., Size, Color, etc. in pruning, one entity needs to be selected from each Specialization 
(yielding e.g., Large_Red.). Pruning also specifies the cardinalities in Multi-Aspect relations. The 
outcome of pruning is called Pruned Entity Structure (PES), which is a selection-free tree. 

The system entity structure and model base (SES/MB) framework combines the SES ontology with the 
classical workflow of modeling and the simulation of modular, hierarchical systems (Zeigler, Praehofer 
and Kim 2000). It introduces two general methods for an interactive or automatic generation of an 
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executable simulation model. Basic models with a predefined input/output interface are organized in a 
model base (MB). The MB can be defined as a repository for basic models that describe dynamic 
behavior. Basic models are models of atomic or coupled systems, which can be composed by their 
input/output interface. Entity node attributes can be used to specify links to basic models in the MB. 
Pruning and translation, as pictured in Figure 1, are proposed as a methodology for processing SESs and 
conducting model transformations. After pruning, a translation method is used to generate an executable 
simulation model (EM) based on the information of the PES and the referenced basic models from the 
MB. 

3 SES/MB AS A MODEL-DRIVEN APPROACH 

Model-driven methodology provides us means for model transformations between technical spaces. The 
technical space represents the context of the model. When we define simulation as the execution of the 
system architecture model, we can argue that the simulation development is transforming the system 
architecture constructed in system space to an executable model in simulation space. A model-driven 
approach is well applicable for such a task. 
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Figure 2: The SES-based MDD approach. 

Figure 2 depicts the proposed SES-based MDD approach. Causal Block Diagrams (CBD) is a general 
formalism that is widely utilized for modeling of causal and continuous-time systems (Posse, De Lara and 
Vangheluwe 2002). They are extensively used in simulation of technical systems and supported by many 
simulation development environments, such as MATLAB/Simulink, as the basic modeling language. 
While we propose to use SES for modeling system architecture in system space, we would like to exploit 
CBD in simulation space for executable simulation modeling.  
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Figure 3: An excerpt from aircraft SES. 

Adopting the layered framework of OMG, we propose a metamodeling layer, domain modeling layer and 
system modeling layer. In order to position the methodology in Eclipse Modeling Framework (EMF) 
ecosystem, SES metamodel is proposed to be developed using EMF CORE (ECORE). A simplified 
excerpt from such a metamodeling effort is presented in (Durak et al. 2017). Further, ECORE needs to be 
supported by a constraint language for expressing the constraints in SES axioms.  

SES metamodel can then be used to specify the structure for a family of systems in domain modeling. 
This structure is regarded as a metamodel, namely System Structure Metamodel. Figure 3 presents an 
excerpt from an example aircraft system structure. This SES captures all possible variations of the system 
structure for the intended uses. For example, four different propulsion systems, namely Turboprob, 
Turbofan, Turbojet and Electric are captured using propulsionSpec specialization node. The identifiers 
that specify the corresponding basic model in the model base are captured with mb attributes at the leaf 
nodes. Examples can be seen in Translational Motion and Rotational Motion entities. System Structure 
Metamodel constitutes the entity parameters as well. Roll Autotpilot parameters are specified as an 
example in Figure 3. The coupling relations among the entities, and accordingly among the corresponding 
basic models are captured as coupling parameter in aspect nodes. The reader can find examples in 
aircraftDec and behaviourDec nodes. 

(a) Tool Provided (b) User Defined

Figure 4: Simulation metamodel (Model Base). 

In simulation space, metamodeling layer includes a CBD metamodel which is also developed using 
ECORE. Such a metamodel has been presented in (Denckla and Mosterman 2005). Domain modeling is 
then proposed as the model base construction. All executable model elements are defined using the CBD 
metamodel. They constitute the Simulation Metamodel. As presented in Figure 4, the elements of 
Simulation Metamodel can be both tool provided elements like an integration block or a transfer function, 
or user defined blocks such as Translational Motion or Radar Altimeter. CBD based simulation modeling 
approaches, such as provided by MATLAB/Simulink or Scilab/Xcos have long been regarded as domain-
specific languages (Botterweck et al. 2009). We can further extend this definition using embedded 
domain-specific languages which essentially inherit the infrastructure of another language and tailor it for 
a specific domain of interest (Hudak 1996). We can propose that user defined BMs specify an embedded 
domain-specific language for the particular domain of interest of some simulation study. 
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Figure 5: Interactive pruning for systems modeling. 

The instances of the System Structure Metamodel appears in the System Structure Model in order to 
specify a particular system. The interactive pruning of the SES can be regarded as a systems modeling 
activity. PES is then proposed as System Structure Model. The decision nodes during the interactive 
pruning operation, such as the entity variants in specialization nodes becomes the elements in the 
modeling toolbox that is envisioned as the means of graphical system structure modeling. Figure 5 depicts 
proposed interactive pruning. The model parameters are also specified in this step. The reader can refer to 
Roll Autopilot parameters that specify a classical proportional, integral derivative controller gains as an 
example.  

The executable model generation is the translation from PES to an executable model as proposed in 
SES/MB framework. We introduce it as the model transformation of the proposed MDD approach from 
System Structure Model to Simulation Model, or from system space to simulation space. 

The interactive pruning process and executable model generation can be largely automated. The necessary 
extensions for the System Structure Metamodel are discussed in (Pawletta et al. 2014) and a first 
appropriate framework for the MATLAB/Simulink environment is introduced in (Schmidt et al. 2016).  

4 CONCLUSION 

Model-driven approaches are well studied in engineering of simulation systems, but the present paper is 
motivated by the lack of wide application of metamodeling and model transformations in simulation of 
technical systems. It points to the effect of low accessibility of the model-driven methodology on the 
diffusion of these practices, and proposes the System Entity Structure and Model Base framework as a 
means of metamodeling and model transformations for the simulation of technical systems. The approach 
is based upon the previous successful applications in MATLAB/Simulink for model-based testing and 
variability management, and proposes a model-based development approach. 

The benefit of such an approach comes from the simplicity and adaptability of the SES/MB framework. It 
provides an accessible methodology for metamodeling, modeling and model transformation to 
simulationists with engineering background. Of course, a precondition is the availability of appropriate 
tools in engineers’ simulation environments. 

There is still a long list of future work in order to strongly support such a claim. This list includes a 
comprehensive metamodeling effort for System Entity Structure using a meta-metamodel supported by a 
constraint language such as OCL. Subsequently, proper mechanisms are required for introducing System 
Entity Structures in state of the simulation environments for domain specific metamodeling and system 
structure modeling to come up with streamlined workflows.  
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