
AN EFFICIENT SIMULATION ALGORITHM FOR CONTINUOUS-TIME
AGENT-BASED LINKED LIVES MODELS

Oliver Reinhardt

Adelinde M. Uhrmacher

Institute of Computer Science

University of Rostock

Albert-Einstein-Str. 22

D-18059 Rostock, GERMANY

ABSTRACT

The efficient continuous-time simulation of linked lives in demography implies specific challenges. The
resulting agent-based models constitute time-inhomogeneous Markov chains which require stochastic sim-
ulation algorithms. Each agent is characterized by diverse attributes, including a specific position in a
dynamically evolving social network which influences the agent’s behavior. This hampers the application
of population-based approaches in implementing the stochastic simulation algorithm. However, as events
are locally constrained by the social network, many events will happen independently of each other. We de-
velop a stochastic simulation algorithm that maintains a dependency structure to realize lazy re-calculation
of events. In case study on a Susceptible-Infected-Recovered-Model with social network and age-dependent
susceptibility we evaluate the performance of the algorithm in comparison to an earlier version. The eval-
uation shows the improved scalability and a significant speedup of up to 150 times that can be achieved by
taking dependencies into account when executing linked, continuous-time agent-based models.

Keywords: agent-based simulation, stochastic simulation algorithms, time-inhomogeneous Markov Chains

1 INTRODUCTION

Over the last two decades agent-based models have become an established method in modeling and simu-
lation. With more convenient ways to specify agent-based models, e.g., (Warnke et al. 2015, Warnke et al.
2016, Birdsey et al. 2016), those models tend to become more and more complex (North et al. 2013), and
with the size of the models their efficient execution becomes more challenging. Most agent-based models
are still executed in a step-wise manner, however, the number of multi-agent models being executed by dis-
crete event approaches is increasing. Scheduling events in continuous time allows capturing the temporal
behavior of multi-agent systems more realistically (Willekens 2009). Therefore, widely used agent-based
modeling and simulation systems have started to provide rudimentary support for this kind of continuous-
time agent-based models (Warnke et al. 2016), e.g., both Repast Simphony as well as NetLogo allow events
to be manually scheduled and retracted as part of the model (Sweda and Klabjan 2011, Sheppard and Rails-
back 2015). Of particular interest are continuous time models where the sojourn times are sampled from
exponential distributions. Applications range from chemical models (Gillespie 1977), epidemical models
(Allen and Lahodny 2012), to decision processes of individuals to migrate (Klabunde et al. 2015). For the
chemical realm the Doob-Gillespie algorithms (Doob 1945, Gillespie 1977) have become an established

.

{firstname.lastname}@uni-rostock.de



Reinhardt and Uhrmacher

means to simulate those models and have also been applied for executing other continuous-time agent-based
models (Vestergaard and Génois 2015). However, whereas in bio-chemical applications agents can often
be aggregated to populations or even concentrations in the continuous limit (Geisweiller et al. 2008), in
demographic models of linked lives this is not the case.

In demographic models of linked lives, each individual tends to be unique by its birth and the social network
the individual is part of, e.g., family ties. Its behavior is conditional on its network and its own properties.
Its age plays a central role in its possibilities and decisions, e.g., for marriage and child birth. This leads
to the exponential distribution of the sojourn times of the continuous-time agent-based models being time-
dependent (Hoem et al. 1976). All of this implies, that although the basic Doob-Gillespie algorithm is
applicable it might not be very efficient, and new solutions are required.

In the following we will present a new simulation algorithm for executing this type of continuous-time
agent-based models more efficiently. Thereby, we will base our efforts on the highly expressive Modeling
Language for Linked Lives (ML3) (Warnke et al. 2015), which is aimed at succinctly describing the diverse
decision processes of individuals in continuous time.

After briefly presenting ML3, we sketch the basic Doob-Gillespie simulation algorithm of ML3, and discuss
the implications of applying this algorithm. To develop the new algorithm we will exploit locality and
dependencies for designing a more efficient simulator which is a reminiscent of a particular variant of the
Doob-Gillespie algorithms, i.e., the Next Reaction Method. We will present the challenges induced also due
to the expressiveness of the domain specific language and the realized means to address those in our new
simulator which will be put to test in a small evaluation study. The evaluation is based on three topological
variants of the SIR model. The performance is compared to the basic implementation. The paper concludes
with a summary and open questions.

2 THE ML3 MODELING LANGUAGE

The Modeling Language for Linked Lives (ML3) is a domain specific modeling language that is specifically
designed to describe continuous-time agent-based models in demography, where agents interact in a social
network. An ML3 model consists of three kinds of components: agents, links between agents, and rules.
Every model entity that acts independently is represented as an agent. This does not only include persons,
but also higher-level actors such as families and households. A higher-level actor all other agents interact
with could be a global continuous space all other agents roam in (Helleboogh et al. 2007), thus mimicking a
NetLogo world (Sheppard and Railsback 2015). However, the focus of ML3 is clearly on networks consti-
tuting the environment of agents. This approach can also be beneficial and very expressive to model spatial
interactions and behaviors of agents, as illustrated by a recent work on collective adaptive systems that ex-
ploits a set of named, discrete, and related locations as the underlying model of space (Feng, Hillston, and
Galpin 2016). As different kinds of entities get modeled as agents, every agent has a type that determines its
properties and behavior. The first part of every ML3 model contains the definitions of the agent types. Each
definition consist of the agent type’s name and a set of typed attributes. The following code snippet defines
an agent type Person with three attributes. The first attribute, status, can take one of three values. The
person is either a child, an adult, or retired. The other two attributes’ values are real numbers.

1 Person(
2 status : {"child", "adult", "retired"},
3 savings : real,
4 income : real
5 );



Reinhardt and Uhrmacher

In addition to the attributes defined by its type every agent has an age. It behaves like an attribute, but its
value changes automatically when time passes. Also, every agent is either alive or dead. Agents are alive
when they are created and can die as part of the model’s behavior.

As ML3 is primarily designed for models in which the acting entities are part of networks that influences
their behavior, these networks are an explicit part of a ML3 model. Every relationship between agents is
modeled by a link. For example, the members of a household are connected to the household by a link.
Parents are connected to their children by a link. Children are also connected to their parents by a link.
A link definition includes the types of the linked agents, the role names of the involved agents, and a link
cardinality that states the number of partners a agent can be linked to. The following snippet shows the
definition of a link:

1 members:Person[1-] <-> [1]Household:household;

This link definition defines the link between a person and its household. It states that each person is con-
nected to exactly one household. The person refers to this household by the role name household. In the
opposite direction every household is connected to one or more persons, that are referred to as members.
Links are always bidirectional and when a link is changed in one direction, the same change is automatically
applied for the other direction. When a child moves away from its parents, its household will be changed to
another household. In this case it will automatically be removed as a member of the parent’s household.

How attributes and the network of an agent change over time, its behavior, is described by rules. Every rule
applies to all agents of a specific agent type that are currently alive. Rule definitions consist of three parts:
the guard condition, the waiting time expression and the effect. The guard condition specifies who is affected
by the rule, i.e., which agents of this agent type are affected. The waiting time expression specifies when the
rule is executed. Finally, the effect describes what happens, when the rule is executed. The following rule
describes how a person moves out of its parents’ household:

1 Person
2 | ego.status = "adult", // guard condition
3 ego.household = ego.mother.household
4 @ moveOutRate // waiting time expression
5 -> ego.household := new Household(); // effect

This rule applies to agents of the agent type Person. Every agent of this type has a rule instance of this
rule that applies to it. The agent is referred to by the keyword ego, similar to the keyword this in many
object oriented programming languages. The guard condition specifies that it is only active for agents who
are currently adults and live in the same household as their mother.

The waiting time expression describes the waiting time until the rule is executed. The waiting times between
the executions of a stochastic rule like the above are the interarrival times of an inhomogeneous Poisson
process. The value of the waiting time expression gives the arrival rate of the Poisson process. In this case
the rate is given by the model parameter moveOutRate.

The third part of the rule is its effect. Rule effects are specified in an imperative style, as a list of statements
that is executed sequentially. In this case the agents status is changed to infected. Beyond the change of
attributes and links possible rule effects include the creation and death of agents. We have already seen the
creation of an agent in the above example, where a new household is created. The death of an agent can be
triggered by calling the predefined procedure die.

The semantics of ML3 are based on time-inhomogeneous continuous-time Markov chains (CTMC). A state
of the CTMC is given by a set of agents with their attributes, their links, and the times of their creation. Each



Reinhardt and Uhrmacher

1 Person(status : {"susceptible", "infectious", "recovered"});
2

3 network:Person[0-]<->[0-]Person:network;
4

5 Person
6 | ego.status = "susceptible"
7 @ a * ego.network.filter(alter.status = "infectious").size() *

infectionScaling[ego.age]
8 -> ego.status := "infectious";
9

10 | ego.status = "infectious"
11 @ b
12 -> ego.status := "recovered";

Figure 1: A SIR model with age-dependent susceptibility in ML3.

rule of the model describes a set of state transitions of the CTMC. In principle, each agent of the type for
which the rule is defined may contribute a transition, as the new state is different, depending on the agent
to which the rule was applied. While multiple agents might theoretically share the same attribute values,
link partners and time of creation, in praxis this will only happen rarely. Transition rates are given by the
rate expressions. As these can depend on time the CTMC is time-inhomogeneous. While multiple agents
might theoretically share the same attribute values, link partners and time of creation, in praxis this will only
happen rarely.

3 A SIR MODEL IN ML3

To illustrate the language and later on the simulation algorithms we will now introduce an implementation
of a simple SIR model in ML3. SIR models are a kind of population-based epidemiological models, where
individuals change between the states susceptible, infectious and recovered (Allen and Lahodny 2012).
Susceptible individuals can get infected, i.e., transition from the susceptible to the infectious state, with a
rate depending on the infection rate constant a of the disease and the number of infectious individuals in the
population. The general idea is that a person has a certain chance to fall ill whenever they meet a infectious
person. Infectious individuals may recover, i.e., transition from the infectious to the recovered state, with
a recovery rate constant b depending on the disease. We expand the standard SIR model in two aspects.
Firstly, we assume that persons do not make contact with every other person in the population, but only
with people from their social network, i.e., their colleagues, friends, family, and other persons they contact
regularly. Therefore they can only get infected by people from their social network. This aspect of our model
is inspired by the BioWar model (Carley et al. 2006), but much simpler. Secondly, we let the infection rate
vary with the individual’s age. Age-dependent susceptibility is used to consider the development of the
immune system in a SIR model (Korobeinikov and Melnik 2013).

Figure 1 shows the complete ML3-implementation of that model. The acting individuals are represented as
agents. In this case we have one type of agents, Person (line 1). Each person has a status, that takes one of
the three values susceptible, infectious and recovered. The social network is represented as a link between
agents (line 3). Every person is linked to an arbitrary number of other persons, their network. Note that
the role name is the same for both directions of the link, making it an undirected link, as opposed to the
previous example of the link between persons and a household.



Reinhardt and Uhrmacher

The rest of the model consists of two rules for the agent type Person. The infection rule (line 6-8) shall
apply to all susceptible persons (line 6). It changes the person’s status to infectious (line 8). Its rate is deter-
mined by the infection rate constant a, the number of infectious network neighbors, and an age-dependent
scaling factor. The number of infectious network neighbors is determined by taking the set of the agent’s
network neighbors (ego.network), filtering for the infectious ones (.filter(alter.status =
"infectious")), and taking the size of the remaining set as a result (.size()). The age-dependent
scaling factor is implemented as a map, a data structure ML3 uses for time series data. Similarly the recovery
rule (line 10-12) implements the recovery of an infectious person.

4 THE STOCHASTIC SIMULATION ALGORITHM

Simulation algorithms for stochastic models with CTMC semantics are a well researched area. The Stochas-
tic Simulation Algorithm (SSA) was originally introduced by Doob (Doob 1945) and popularized by Gille-
spie (Gillespie 1977). Gillespie designed the algorithm for systems of chemical reactions, but it applies
for all systems with CTMC semantics. Given a state s of the Markov Chain at certain time t, the algorithm
calculates the next state s′ of the system and the time t ′ = t+Δt it enters this next state. This way a trajectory
of the Markov Process is sampled.

Essentially the SSA achieves this by sampling the waiting time distribution of every state transition of the
CTMC and executing the transition with the shortest waiting time. The waiting time T is exponentially
distributed:

P(T ≤ Δt) = 1− exp(−λ (s)Δt) (1)

In the usual case of a homogeneous CTMC the exponential distribution’s rate parameter λ (s) only depends
on the current state s. This distribution can be efficiently sampled by applying the inversion method, i.e.,
sampling r from the uniform distribution on the unit interval and applying the distribution function’s inverse:

Δt =
1

λ (s)
· ln 1

r
(2)

In ML3’s case of transition rates that can additionally depend on simulation time, the SSA can be applied
in largely the same way (Jansen 1995). Transitions rates λ (s,τ) are now no longer constant between state
changes, leading to a similar but more complex waiting time distribution:

P(T ≤ Δt) = 1− exp(−
∫ t+Δt

t
λ (s,τ) dτ) (3)

This distribution is a generalized form of the exponential distribution. When λ (s,τ) is constant as a function
of τ the value of the integral is λ (s)Δt, as in equation (1). Applying the inversion method leads to the
following equation:

∫ t+Δt

t
λ (s,τ) dτ = ln

1

r
(4)

For general functions of time, an analytical solution of this equation is unknown. Even for time-dependent
rate functions that are commonly used in demography like the Gompertz-Makeham law of mortality a closed



Reinhardt and Uhrmacher

form solution gets very complex (Jodrá 2009). For reasons of efficiency numerical solutions are also un-
feasible, as a large number of waiting times has to be calculated. In the case of rate expressions that are
piecewise constant in time, the integral is a piecewise linear function for which an analytical solution of the
equation can be found. More complex rate functions can be approximated by piecewise constant functions.
As rates for demographic events like mortality and fertility are often estimated from data that is gathered
yearly and for age cohorts and is therefore inherently piecewise constant, we limit ML3 to these. The algo-
rithms we describe in this paper are not affected by this constraint. They apply in the same way when the
waiting time distribution is sampled in different ways that allows for more complex functions of time.

1 t = 0
2 while t < t_end do
3 delta_t = inf
4 activated_r = null
5 activated_a = null
6 for each a in alive_agents(s) do
7 for each r in rules(type(a)) do
8 if guard_satisfied(a,r,s) do
9 delta_t_r_a = waiting_time(a,r,s,t)

10 if delta_t_r_a < delta_t do
11 delta_t = delta_t_r_a
12 activated_r = r
13 activated_a = a
14 t = t + delta_t
15 execute(activated_a,activated_r,s,t)
16 end

Figure 2: The stochastic simulation algorithm applied to ML3.

Figure 2 shows how the SSA can be directly applied to ML3. Every active ML3 rule instance, i.e., every
pair of an agent and a rule that applies to this agent, contributes a transition. Therefore for each agent the
simulator determines the set of all rules that are defined for this agent type. For each of these rules the guard
condition is evaluated. When the guard evaluates to true, the waiting time according to the waiting time
expression is determined. If it is smaller than the waiting time of the currently chosen rule instance, this
instance is chosen instead.

For agent-based models with heterogeneous populations of agents this algorithm is highly inefficient. The
algorithm was originally developed for systems with a limited number of possible transitions. In each
step a waiting time for each transition of the Markov chain has to be calculated to execute a single event.
Heterogeneous populations of agents lead to a very large number of transitions, as the application of the
same change to different agents results in different states. The number of transitions, and therefore the time
required to execute a single event, grows linearly with the number of agents. In consequence this algorithm
is not feasible for large numbers of agents.

5 EXPLOITING LOCALITY

As shown in the previous section the standard SSA is inefficient for models with populations of highly
heterogeneous agents, as the number of events that have to be scheduled in every step is very high. We will
now continue to show that the amount of events that have to be rescheduled in every step can be reduced
significantly, when the effects of most events are restrained to local changes.



Reinhardt and Uhrmacher

Figure 3: An extract of a possible SIR model state (yellow – susceptible, red – infectious, blue – recovered).

Consider the SIR model (Section 3) with a population of 1,000 agents and the state depicted on the left side
of Figure 3. Following the naive SSA we have to consider 2,000 rule instances to find the next event, as we
have to consider infection and recovery of all agents to find the one with the minimal waiting time. Let us
assume that is the recovery of A. After the execution of that event we have a new state, as depicted on the
right side of Figure 3. At this point we have finished the calculation of one event and start with the next one.
For that we have to evaluate guard conditions for all 2,000 rule instances and draw a waiting time for all the
active instances once again. However, the recovery of A only effects a small part of the state. As all rules
of the model only take direct network neighbors of ego into consideration, only rule instances of the five
direct neighbors of A are affected. For most rule instances the evaluation of the guard will give the same
result and the execution time will be drawn from the same distribution as in the previous step. So instead
of recalculating them we could reuse these previously calculated times and only reschedule the execution of
the few affected rule instances to gain efficiency.

This idea of reusing the execution time generated by the SSA is not new, but goes back to the Next Reaction
Method (NRM) introduced by Gibson and Bruck (Gibson and Bruck 2000) for chemical reaction networks.
They introduced a dependency graph with all possible reactions as its nodes and a directed edge from a
reaction ri to another reaction r j when the execution of ri leads to a change of the reaction rate of r j.
Initially the algorithm generates execution times for all reactions like the original SSA. These are stored in
an event queue, a priority queue that uses the execution times as priorities. The reaction with the smallest
execution time is then retrieved from the queue and executed. Afterwards the dependency graph can be used
to determine all reactions that have to be rescheduled. For these reactions a new execution time is determined
and their position in the event queue is updated accordingly. It has been shown that the NRM is significantly
more efficient than the original SSA when the firing of one reaction does not affect many other reactions,
i.e., when the effects of events are mostly local (Cao et al. 2004). However, this approach is not directly
applicable to agent based models with evolving social networks between the agents. In the case of chemical
reaction network the dependency graph is relatively small, easy to generate, and static. The size of the graph
is determined by the number of possible transitions in each state, as each transition contributes one node to
the graph. With heterogeneous populations of agents the number of transitions is typically very large, as we
have already argued. We need to distinguish between the different transitions that different instances of a
ML3-rule contribute. In a set of chemical reactions it is easy to determine the reactions that are dependent
on a given one. The execution of A+B →C changes the number of A, B, and C in the system, and nothing
else. So only reactions with A, B or C as reactants are affected. In ML3 transition rates can be much more
complex, e.g., rates depending on attributes of agents that are reached via multiple links. Also, rule effects
may be intricate, e.g., changing attributes and links of multiple agents, not just the one that the rule was
applied to. Therefore the task creating the dependency graph by analyzing the rules on a syntactical level is
less straight forward. In addition, the network structures evolve during the simulation, as ML3 allows for the



Reinhardt and Uhrmacher

1 schedule(a, r, s, t, q)
2 (b, p1) = evaluate_guard(a, r, s)
3 if b do
4 (delta, p2) = waiting_time(a, r, s, t)
5 q = requeue(a, r, t+delta)
6 log_dependencies(a, r, p1, p2)

Figure 4: Pseudocode for scheduling an event: schedule(a, r, s, t, q). For clarity we show the

logging of dependencies as a separate step.

1 t = 0; q = null
2

3 for each a in alive_agents(s) do
4 for each r in rules(type(a)) do schedule(a, r, s, t, q)
5 end
6

7 while t < t_end do
8 (a, r, t) = top(q); (s’, p) = execute(a, r, s, t); s = s’
9 for each (agent, attr, link) in p do

10 for each (a, r) in dependent_events(agent, attr, link) do
11 schedule(a, r, s, t, q)
12 for each a in created(p) do
13 for each r in rules(type(a)) do schedule(a, r, s, t, q)
14 for each a in died(p) do
15 for each r in rules(type(a)) do retract (a, r, q)
16 end

Figure 5: The rule instance with the smallest time stamp is selected and executed. The part of the state that

is changed thereby is recorded in p. All rule instances that are dependent on p need to be rescheduled.

creation and removal of agents and the change of links during the simulations. So with ML3 a dependency
graph would not be static; it has to be updated after every event. We introduce a different way to manage
the dependencies between rule instances. A rule instance has to be rescheduled when the specific part of
the state that affects the value of the guard and rate expression of this rule instance is changed. When we
schedule a rule instance we will determine all parts of the state that affect this rule instance. When a rule
instance is executed we determine which parts of the state change during the execution. Then we reschedule
all rule instances that depend on the part of the state that is changed.

The state of an ML3 model is a set of agents, with specific values for their attributes, links and aliveness.
Therefore the values of guard and rate expressions can only change, when attributes, links and aliveness
of agents change that are evaluated as part of the guard and rate expression being evaluated. Their change
might not necessarily change the value of the guard or rate expression. However, the value of the guard or
rate expression will definitely remain the same if the part of the state that is accessed by evaluating the guard
and rate expression has not changed since last accessing it.

We use this idea to create a data structure that captures the dependencies between rule instances and at-
tributes and links. The model state is, as in the naive SSA approach, stored as a set of agents with the



Reinhardt and Uhrmacher

Figure 6: The dependency data structure for the example in Figure 3. The top shows the event queue, the

bottom shows the state as a set of agents. Unscheduled rule instances are not shown.

associated attributes and links, times of creation and death. Additionally we store pointers to all depending
rule instances together with attribute and link values and the information about the aliveness of the agent.
To enable us to remove dependencies during rescheduling we also always set a backward pointer from the
dependent rule instance to the attribute, link, or aliveness. All rule instances are scheduled in an event queue,
similar to the NRM. To schedule a rule instance we do the following (Figure 4): Firstly, the guard condition
is evaluated. During the evaluation of the guard, whenever we evaluate an attribute, link or the aliveness of
an agent, we add a pointer to the rule instance. When the guard evaluates to false, we do not insert the rule
instance into the event queue, or remove the rule instance from the queue, if it is currently scheduled. The
rule instance itself is then kept in memory, so the pointers to it remain valid. If the guard evaluates to true,
we draw from the waiting time distribution. Again we add this instance as a dependency to all attributes and
links we have evaluated while calculating the waiting time. Then we add the rule instance together with the
now determined waiting time to the event queue.

We can now determine the next event by taking the top element of the event queue. During the execution
of the event we keep track of the attributes and links of agents that are changed. In addition we record the
creation and death of agents. Now we retract all instances belonging to agents that died, as they are no longer
active. Then we look up the rule instances that depend on the changed part of the state and reschedule them.
To do that we remove all pointers in the data structure to the rule instance we want to reschedule, using the
backwards pointers, and then schedule it again. Figure 5 shows this in pseudocode.

Figure 6 shows an example of this. Once again, consider the situation of Figure 3. Currently the state is
as depicted on the left. When scheduling the rule instance for the infection of C, we needed to evaluate the
attribute status of C (for the guard) and all it’s neighbors (for the rate), including A and D. Therefore
the status attribute of these agents is linked to that rule instance in the queue. We have done the same for
all other rule instances. Now we can execute the next event, the recovery of A. When we do that, the
attribute status of A changes. To determine which events need to be rescheduled we look up the events
that are dependent on A’s status: The infection and recovery of A, and the infection of C. We do not need to
reschedule any other events.

As we no longer need to reschedule all rule instances after each event, the number of recalculated waiting
times after each events no longer grows linear with the number of agents. When we assume that the effects
of events are strongly local, as is the case in our SIR model, and the size of network neighborhoods does
not increase with the number of agents, the number of rescheduled rule instances no longer depends on
the population size. Even when this assumption does not hold, the number of rescheduled events is still
considerably smaller, as long es not all events have global effects. In addition to that we have to consider



Reinhardt and Uhrmacher

●

●

● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●
●

● ● ● ● ● ● ● ●

●

●

●

●

●
●

● ● ● ● ● ● ● ●

0 25 50 75 100 125 150
0

200

400

600

800

1,000

●

●

●

naive SSA − susceptible
naive SSA − infectious
naive SSA − recovered
SSA with locality − susceptible
SSA with locality − infectious
SSA with locality − recovered

Simulation Time

Po
pu

la
tio

n 
S

iz
e

Figure 7: Average number of susceptible, infectious and recovered agents.

the costs of managing the dependency data structure and the event queue. The former adds an overhead to
the evaluation of guard and waiting time expression, and after the execution of the event. This overhead is
independent of the population size. The cost of the latter depends of the implementation of the event queue
and the amount of locality in the model (Jeschke and Ewald 2008). Altogether we expect our algorithm to
be more efficient than the naive SSA for large populations of agents.

6 EVALUATION

To evaluate our approach, we executed some experiments using the SIR model from Section 3. We imple-
mented both the original SSA and our improved algorithm for ML3 in Java. In a first experiment we show
that both algorithms yield the same results. The second experiment shows that the exploitation of locality
indeed improves scalability in terms of the number of agents. In the third experiment we show that this
advantage diminishes when locality gets weaker due to additional network links, but an advantage remains
as long as the average number of network neighbors remains reasonable low.

The ML3 code in Section 3 contains only the model structure and behavior, but not the parameterization
and the initial state. For our first experiment we created a population of 1000 agents with ages uniformly
distributed between 0 and 100, of which 5% are initially infected. To establish a network between the agents
we choose five random neighbors for each agent. This way each agent ends up with five neighbors, when no
other agent chooses this one as a neighbor, or more, when other agents choose this one as a neighbor. We set
the parameters a and b to 0.03 and 0.05 respectively and the age-dependent scaling of the infection rate to 0.5
for persons younger than 20 years, 1 between the ages 20 and 60, and 2 for everyone older than 60 years. We
end a simulation run when no infected agents are left. With this configuration we executed 100 replications
each with both with the simulation algorithms. Figure 7 shows the results for both configurations. We see
the wave of infection that is typical for SIR models.

To evaluate the performance of our algorithm and compare it to the naive approach we varied the population
size and the number of links and measured the time needed to execute a single replication. Figure 8 shows
the results. The variation of the population size shows that our approach has a significant advantage in
scalability versus the naive approach (left side). While it is less than 3 times as fast with a population of 100
agents and five links per agent, it’s already 150 times faster with 10,000 agents. However, this advantage
depends strongly on the network density (right side). With increased number of links, events are less locally
constrained, so that the gains from exploiting locality diminish. At some point they get smaller than the
overhead due to the need to maintain the event queue. However, in a real-life demographic model we expect
a large population of at least a few thousand agents, while each agent has only a few link partners.

7 CONCLUSION

We present a variation of the Stochastic Simulation Algorithm for the modeling language ML3, a modeling
language for agent-based demographic models with populations of agents interacting in a network. While



Reinhardt and Uhrmacher

●

●

●

●

●

●

●

●

●

●

100 1,000 10,000
10−1
100
101
102
103
104
105

●

●

naive SSA − 5 links
SSA with locality − 5 links
naive SSA − 100 links
SSA with locality − 100 links

Population Size

E
xe

cu
tio

n 
Ti

m
e 

in
 s

●

●
●

● ● ●

●

●
●

● ● ●

0 100 200 300 400 500
10−1

100

101

102

103

Link Parameter

E
xe

cu
tio

n 
Ti

m
e 

in
 s

●

●

naive SSA − pop. 500
SSA with locality − pop. 500
naive SSA − pop. 1000
SSA with locality − pop. 1000

Figure 8: Comparison of the average execution time of one replication for the two algorithms as a function

of population size (left) and number of links (right).

we focus on ML3, our approach is applicable for similar models, i.e, where the majority of agents need
to be treated individually, implemented in other formalisms. We showed that the SSA in its usual form is
highly inefficient for this kind of models, as due to the heterogeneity of the agent population the number of
transitions that need to be scheduled after every event is very large. However, as an agent does not interact
with all agents but only with a fraction of the agent population, effects of events tend to be local. We exploit
this locality property by introducing a data structure to keep track of dependencies between transitions, so
we only need to reschedule them when the waiting time actually changes. We demonstrate the feasibility of
our algorithm by applying it to a SIR model of infectious disease in a small case study. Future work may
include other methods to sample the waiting time distribution to allow for more general time-dependent rate
functions and the application of approximation to further speed up the simulation.

ACKNOWLEDGMENTS

This research is partly supported by the German Research Foundation (DFG) via research grant UH-66/15-1.

REFERENCES

Allen, L. J. S., and G. E. Lahodny. 2012. “Extinction Thresholds in Deterministic and Stochastic Epidemic
Models”. Journal of Biological Dynamics vol. 6 (2), pp. 590–611.

Birdsey, L., C. Szabo, and K. Falkner. 2016. “CASL: A Declarative Domain Specific Language For Mod-
eling Complex Adaptive Systems”. In Proceedings of the 2016 Winter Simulation Conference. IEEE
Press.

Cao, Y., H. Li, and L. Petzold. 2004. “Efficient Formulation of the Stochastic Simulation Algorithm for
Chemically Reacting Systems”. The Journal of Chemical Physics vol. 121 (9), pp. 4059–4067.

Carley, K., D. Fridsma, E. Casman, A. Yahja, N. Altman, Li-Chiou Chen, B. Kaminsky, and D. Nave.
2006. “BioWar: Scalable Agent-Based Model of Bioattacks”. IEEE Transactions on Systems, Man, and
Cybernetics - Part A: Systems and Humans vol. 36 (2), pp. 252–265.

Doob, J. L. 1945. “Markoff Chains–Denumerable Case”. Transactions of the American Mathematical Soci-
ety vol. 58 (3), pp. 455.

Feng, C., J. Hillston, and V. Galpin. 2016. “Automatic Moment-Closure Approximation of Spatially Dis-
tributed Collective Adaptive Systems”. ACM Trans. Model. Comput. Simul. vol. 26 (4), pp. 26:1–26:22.

Geisweiller, N., J. Hillston, and M. Stenico. 2008. “Relating continuous and discrete PEPA models of sig-
nalling pathways”. Theoretical Computer Science vol. 404 (1-2), pp. 97–111.

Gibson, M. A., and J. Bruck. 2000. “Efficient Exact Stochastic Simulation of Chemical Systems with Many
Species and Many Channels”. The Journal of Physical Chemistry A vol. 104 (9), pp. 1876–1889.



Reinhardt and Uhrmacher

Gillespie, D. T. 1977. “Exact Stochastic Simulation of Coupled Chemical Reactions”. The Journal of Phys-
ical Chemistry vol. 81 (25), pp. 2340–2361.

Helleboogh, A., G. Vizzari, A. M. Uhrmacher, and F. Michel. 2007. “Modeling dynamic environments in
multi-agent simulation”. Autonomous Agents and Multi-Agent Systems vol. 14 (1), pp. 87–116.

Hoem, J. M., N. Keiding, H. Kulokari, B. Natvig, O. Barndorff-Nielsen, and J. Hilden. 1976. “The Statistical
Theory of Demographic Rates: A Review of Current Developments [with Discussion and Reply]”.
Scandinavian Journal of Statistics vol. 3 (4), pp. 169–185.

Jansen, A. P. J. 1995. “Monte Carlo Simulations of Chemical Reactions on a Surface with Time-Dependent
Reaction-Rate Constants”. Computer Physics Communications vol. 86 (1), pp. 1–12.

Jeschke, M., and R. Ewald. 2008. “Large-Scale Design Space Exploration of SSA”. In Computational Meth-
ods in Systems Biology, edited by M. Heiner and A. M. Uhrmacher, Volume 5307, pp. 211–230. Springer
Berlin Heidelberg.

Jodrá, P. 2009. “A Closed-Form Expression for the Quantile Function of the Gompertz–Makeham Distribu-
tion”. Mathematics and Computers in Simulation vol. 79 (10), pp. 3069–3075.

Klabunde, A., F. Willekens, S. Zinn, and M. Leuchter. 2015. An Agent-Based Decision Model of Migration,
Embedded in the Life Course - Model Description in ODD+D Format. MPIDR Working Paper WP-
2015-002. Max Planck Institute for Demographic Research.

Korobeinikov, A., and A. V. Melnik. 2013. “Lyapunov Functions and Global Stability for SIR and SEIR
Models with Age-Dependent Susceptibility”. Mathematical Biosciences and Engineering vol. 10 (2),
pp. 369–378.

North, M. J., N. T. Collier, J. Ozik, E. R. Tatara, C. M. Macal, M. Bragen, and P. Sydelko. 2013. “Complex
Adaptive Systems Modeling with Repast Simphony”. Complex Adaptive Systems Modeling vol. 1 (1),
pp. 3.

Sheppard, C. J. R. and Railsback, S. 2015. “Time Extension for NetLogo (Version 1.2)”. https://github.com/
colinsheppard/time. Accessed July 2016.

Sweda, T., and D. Klabjan. 2011. “An Agent-Based Decision Support System for Electric Vehicle Charging
Infrastructure Deployment”. In 2011 IEEE Vehicle Power and Propulsion Conference, pp. 1–5. IEEE.

Vestergaard, C. L., and M. Génois. 2015. “Temporal Gillespie Algorithm: Fast Simulation of Contagion
Processes on Time-Varying Networks”. PLOS Computational Biology vol. 11 (10), pp. e1004579.

Warnke, T., O. Reinhardt, and A. M. Uhrmacher. 2016. “Population-Based CTMCs and Agent-Based Mod-
els”. In Proceedings of the 2016 Winter Simulation Conference. IEEE Press.

Warnke, T., A. Steiniger, A. M. Uhrmacher, A. Klabunde, and F. Willekens. 2015. “ML3: A Language for
Compact Modeling of Linked Lives in Computational Demography”. In Proceedings of the 2015 Winter
Simulation Conference, pp. 2764–2775. IEEE Press.

Willekens, F. 2009. “Continuous-Time Microsimulation in Longitudinal Analysis”. In New Frontiers in
Microsimulation Modelling, edited by A. Zaidi, A. Harding, and P. Williamson, pp. 413–436. Ashgate.

AUTHOR BIOGRAPHIES

OLIVER REINHARDT is a Ph.D. student in the modeling and simulation group at the university of Ros-
tock. His email address is oliver.reinhardt@uni-rostock.de.

ADELINDE M. UHRMACHER is professor at the Institute of Computer Science, University of Rostock
and head of the modeling and simulation group. Her email address is adelinde.uhrmacher@uni-rostock.de.


