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ABSTRACT 

Many studies can be found successfully applying sophisticated and powerful pedestrian simulation 
packages for crowd management at public transport stations. However, there are gaps in understanding 
the ripple effect of crowding and passenger demands at a station to the crowdedness at stations further 
down a transit line. This paper reports a computational framework that links crowd simulations at transit 
stations of an urban network. Inherently the framework allows for the simulation of the transferring of 
mobility characteristics of passengers along a transit line as they travel from one station to another and its 
impacts on crowdedness at these stations. We also report on a proof of concept demonstrating the 
application of the framework to a small hypothetical train network. The crowd simulation software used 
in this study is MassMotion. However, the framework should be adaptable to any crowd simulation 
package.  
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1 INTRODUCTION 

Simulation of pedestrian movements has been widely recognised and increasingly used as a powerful tool 
for effective crowd management in both normal and emergency situations at public places. Pedestrian 
modelling and simulation therefore has been the subject of many studies over the last two decades. The 
focus of many of these studies has been on reproducing as realistically as possible the navigation (i.e. 
route choice) and movements (i.e. collision avoidance) of pedestrians through space. Approaches used in 
these studies can be classified into macroscopic, microscopic and hybrid. The macroscopic approach 
treats the crowd as a continuum entity, the dynamics of which is often described by models of fluid 
mechanics. The approach was pioneered by Henderson (1971). The microscopic approach models each 
pedestrian as an individual entity whose behaviours are determined by physical and social forces, which 
describe his/her interactions with other pedestrians and with the environment. The Helbing’s social force 
model (Helbing and Molnar 1995) has been widely adapted in many studies following this approach. 
Comparisons and evaluations of approaches for modelling crowd dynamics can be found in studies by by 
Zheng, Zhong, and Liu (2009) and by Bellomo and Dogbe (2011). Hybrid models have been proposed to 
address the high computational demand in simulating huge crowds individually. A review of existing 
hybrid models for pedestrian simulation can be found in the study by Ijaz, Sohail, and Hashish (2015). 
More studies recently have focused on developing computational architectures that can cope with large-
scale crowd modelling, including those by Lozano et al. (2007) and by Fernandez et al. (2010).  
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Thanks to such high research interest on the different facets of the topic, the last decade has seen the 
arrival of many packages, both commercial and open source, dedicated to crowd simulation. They are 
sophisticated and yet efficient enough for dependable analysis of large crowd movements in complex 
environments. Review of a wide range of crowd simulation packages can be found in studies by 
Kuligowski, Peacock, and Hoskins (2010) and by Challenger, Clegg, and Robinson (2009). 

In fact, many studies have applied these packages for crowd management and/or facility management at 
public transport stations (Galiza et al. 2009; Wen 2013). However there has been very little research 
investigating these issues from a train service line perspective. In other words, there lacks an 
understanding of what platform crowding will be like at station along a service line as a result of the 
transferring of passenger mobility characteristics from previous stations. These accumulative effects may 
become significant where mobility-reduced individuals comprise a considerable portion of the passengers. 
Such understanding (and even better, predictive capability), combined with the knowledge of nominal 
passenger demand along a train service line, informs planners more accurately the real demand a train 
would face at the stations, and thus facilitates the building of a more robust and reliable timetable for the 
line. 

This paper reports a framework that efficiently links the simulation model of passenger movements at 
stations along service lines of an urban train network. A primary task of the framework is coordinating the 
execution of simulation of passenger movements at each of the stations following the chronological order 
of events that happen at these stations. In this study these events are the arrival of trains at any one of the 
stations. This approach allows the composition of passengers on board a train at a station to be determined 
explicitly (by means of the crowd simulation of their movements within the station) and to be fed into the 
simulation of the passenger movements at a subsequent station down the line. As a result, this framework 
is among very few of its kind, if not the first, that enable the simulation of (i) the transferring of mobility 
characteristics of passengers as they travel from one station to another along a train line, (ii) the impacts 
of such dynamics on passenger build up at these stations, and (iii) the effects the resulting crowdedness 
has on the movement of passengers at these stations. 

While somewhat similar studies can be found elsewhere (for example by Srikukenthiran 2015), the 
contribution of this framework lies in the detailed description of an algorithm used for coordinating the 
simulation of passenger movements at each station, as well as the fact that it was developed from the 
perspective of a user of crowd simulation softwares. The latter point is critical because the framework 
does not require access to the source codes of the softwares. Importantly the Python implementation of 
the framework, which is available for download at https://github.com/smart-facility/LinkinCrowd, greatly 
enhances its reproducibility. 

The remaining of the paper details the architecture of the framework, including descriptions of its main 
elements and a flow chart for preparing, executing crowd simulations at a station and feeding results to 
the simulation at the next station. We also report on a proof of concept that applies the proposed 
framework to simulate the passenger movements within and across five hypothetical train stations, 
serviced by four train lines and twelve train services. It should be noted that the proof of concept serves 
purely as a demonstrative application of the framework. The framework was designed with a focus on 
scalability and transferability, thus should be capable to effectively handle the size and complexity of a 
real urban train network. Please also note that while the software MassMotion was used to simulate 
passenger movements within a train station, the proposed framework is adaptable to any crowd simulation 
software. 

2 FRAMEWORK FOR LINKING CROWD SIMULATION AT TRAIN STATIONS 

The architecture of the framework includes a class diagram (a Unified Modelling Language diagram) that 
describes relations between its primary elements (Figure 1) and a flow chart of its primary computational 
steps (Figure 2). 



Huynh and Barthelemy 

2.1 Class diagram of main elements in the framework 

The urban train network, represented by class ‘RailNetwork’, comprises a number of train lines and a 
number of train stations. Attributes of each train line (represented by class ‘TrainLine’) include the line 
name, the list of stops the train line serves (i.e. the route), the timetable of the line, and the list of train 
services running on this line. In this framework, each stop is represented by class ‘Stop’ and is defined as 
a platform at a station. The timetable of a train line is represented by a two-dimensional integer array, 
each row of which contains the arrival time of train services at the corresponding stop along the route of 
this train line. 

 

 
Figure 1: Class diagram of primary elements in the framework. 

The number of train services, represented by class ‘TrainService’, belonging to a train line is determined 
by the number of columns in the train line timetable. Consequently, each column defines the timetable of 
a train service. Attribute ‘initPaxOnBoard’ is a collection of key-value pairs representing the initial 
number of passengers (the value) of each passenger type (the key) on board a train service before it enters 
the simulation. The integer values in this attribute are zero if the first stop of a train line is included in the 
simulation, and can be non-zero otherwise (e.g. in cases where only a part of the train network is 
investigated). Attribute ‘ratioRemOnBoard’ is a collection of key-value pairs informing the proportion of 
passengers not alighting from a train service (the value) at a given stop (the key). The value of this 
attribute at each stop is a collection key-value pairs detailing the percentage of passengers remaining on 
board the train (the value) of each passenger type (the key). Structured similarly, attributes ‘paxOnBoard’, 
‘paxBoardingActual’ and ‘paxAlightingActual’ represent the number of passengers of each passenger 
type currently on board, successfully boarding, and successfully alighting from a train service at a stop, 
respectively. Attributes ‘paxBoardingActual’ and ‘paxAlightingActual’ are to be determined from the 
crowd simulation of passenger movements at the station to which the stop belongs. 

A station, which is represented by class ‘Station’, comprises a number of stops (i.e. platforms). Attribute 
‘paxArriving’ of a station represents the number of passengers of each passenger type arriving at the 
station to board a particular train service. Attribute ‘ratioPaxExiting’ indicates the proportion of 
passengers of each type who alight from a train service, walk to the gate of the station and exit the 
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simulation. Attribute ‘ratioPaxFlow’ indicates the proportion of passengers of each type who alight from 
a train service and walk to (then wait at) each of the other stops (platforms) at the station for boarding a 
connecting train. 

A passenger type, declared within the enumeration ‘PaxType’, represents passengers having the same set 
of mobility attributes. Passenger types are used primarily in defining activity patterns of passengers (e.g. 
arriving at a station and boarding a train) and as a reference to their mobility attributes during the 
simulation of their movements at a station. Therefore, the attributes of a passenger type are not required to 
be explicitly declared within the framework, but must be defined in the crowd simulation model for each 
station. Different pedestrian simulation softwares define mobility attributes of an agent (or passenger) 
differently. In MassMotion, these attributes include both physical properties and behavioural properties of 
a passenger.  Physical properties include body radius and desired speed and acceleration distributions. 
Behavioural properties reflect the passenger’s preferences to certain geometric conditions of the 
environment which eventually affect the passenger’s route choice. Please refer to the MassMotion 
software manual (2016) for more detail definition of these mobility characteristics. 

Please note in the diagram in Figure 1, the ‘+’ symbols simply represent (public) elements defined in the 
enumeration ‘PaxType’; whereas the ‘-’ symbols represent private attributes of each of the classes. 
Classes in the diagram are linked with each other by association relationships. 

2.2 Flowchart of primary computational steps 

As mentioned earlier an event in this study is the arrival of a train service at any station in the network. 
Therefore, the identification of the next event in Step 1 of the flowchart shown in Figure 2 relies on the 
timetable of train services arriving at each of the stations and is described in detail below. 

 
Figure 2: Flowchart of main computational steps. 

Let  denote the timetable of train services arriving at a station k. Each row in  
is an array containing the time train services from one train line arriving at one of the platforms at the 
station. These rows are drawn directly from attribute ‘timetable’ of the relevant train lines. Please note 
that time values in each array are in ascending order and that the length of these arrays could be different 
because the number of train services arriving at a platform could be different from one line to another. 

Start time of the next train arrival event is determined by equation (1). 

        (1) 
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where , ,  

In equation (1),  is the number of stations in the train network;  and  is 
the total number of rows and the length of the ith row, respectively, in the timetable of station k.  is the 
index of the next arrival time available for consideration in the ith row in the timetable of station k. The 
matrix  is initialised by , and then is updated at each iteration by equation (2). 

          (2) 

 is the time when the simulation of passenger movements at station  is resumed, which 
runs until the next event at this station, which is determined by equation (3). 

           (3) 

where ,  . 

The train service that triggers this arrival event and the stop it arrives at at station  can be identified 
by querying for time  in attribute ‘timetable’ of each train line that serves station . 

The theoretical number of passengers alighting from this train service at this stop (Step 2 in the flowchart) 
is determined from its attributes ‘paxOnBoard’ and ‘ratioRemOnBoard’ as in equation (4). 

   (4) 

where  paxOnBoardl,m,n = paxOnBoardl,m-1,n + paxBoardingActuall,m-1,n – paxAlightingActuall,m-1,n 

 is the number of passengers of type  alighting from train service  at stop . Similar 
interpretation applies to , , , and 

. Please note that  equals to  if  is the 
first stop and that and  are determined from the 
simulation of passenger movements at the previous stop. 

Preparing inputs into the MassMotion model for simulation of passenger movements at station  in 
Step 3 of the flowchart involves modifying csv files associated with the timetable feature in MassMotion. 
This feature allows for importing of agent schedules and/or events to be simulated from a series of 
(programmatically) created csv files. Primary information to be updated in these csv files includes 

 Attributes of the event, including its start time  and the duration (i.e. dwell time of the 
train at this station) 

 Agent schedules, including information on the when, where, how many, and of which profile (i.e. 
passenger type) agents are created within the model and their destination. Passengers who alight 
from train service  are created at the arrival platform when the train arrives. Their destination is 
either the gate of the station or each of the remaining platforms at the station (where they will 
board a connecting train). The number of alighting passengers heading to the station gate and 
exiting the simulation is determined by multiplying  by . The 
number of alighting passengers heading to each of other platforms at the station is determined by 
multiplying  by the corresponding value in attribute ‘ratioPaxFlow’ of the station. 
Passengers who arrive at the station to board train service  are created at the station gate and may 
follow a predefined time-dependent arrival distribution. Their destination is the arrival platform 
of the train. Their number is informed by corresponding values in attribute ‘paxArriving’ of the 
station. 

 Agent activities, e.g. waiting on a platform for and boarding a connecting train. 
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The simulation starting time and end time (which were determined from equations (3) and (4)) are also 
updated in the project file MassMotion model before it is executed (Step 4) from within the framework. 
Complete descriptions of elements of the timetable feature of MassMotion, as well as the theoretical 
background behind its algorithms for agents’ navigation and collision avoidance when simulating their 
second by second movements can be found in the MassMotion software manual (2016). 

The number of passengers successfully boarding and alighting from train service  is extracted from 
MassMotion output files (Step 5) and is saved to attributes ‘paxBoardingActual’ and 
‘paxAlightingActual’. They will be used in deciding the number of passengers on board this train in 
preparing inputs for the simulation at the next stop. 

The steps in Figure 2 will be iteratively executed until , i.e. all arrival trains have 
been considered. 

3 PROOF OF CONCEPT OF THE FRAMEWORK 

The proposed framework was applied to simulate passenger movements within and across five 
hypothetical train stations serviced by four train lines. Please note that this proof of concept purely serves 
as a demonstrative application of the framework and does not reflect the operations of any real-life train 
network. 

3.1 Model development and assumptions 
The geometry of the stations is shown in Figure 3. Please note that the simulation of passenger 
movements within a train carriage is not in the current scope the framework. Therefore, detailed geometry 
of train carriages is not included in Figure 3. Passengers after successfully boarding a train (i.e. passing its 
gates onto the train floors) exit the simulation. Escalators are available in pairs at stations S2, S4 and S5. 
Escalators of a pair travel in opposite directions. 

Table 1: Timetable of train lines in the proof of concept. 

 
Timetable of the train lines is shown in Table 1. Each train line has four train services travelling pass 
three stops. The arrival and departure of a train are not simulated explicitly but via the opening of train 
gates at its arrival time and closing them at its departure time. The dwell time is assumed to be 45 seconds 
for all trains arriving at any platform. 

With regards to station attributes, this proof of concept assumes that a total of 50 passengers of each type 
arrive at a station for boarding any train within 6 minutes prior to its arrival at the station. At all stations 
except for S2, half of the passengers of each type who alight from any train go to the station gate and exit 
the simulation while the other walk to the other platform and wait for a connecting train. At station S2, 
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55% of the alighting passengers (from any train) of each type walk to the station gate and exit while 15% 
of them walk to each of the other three platforms for a connecting train. 

 

 
Figure 3: Layout of train stations in the proof of concept. 

With regards to train service attributes, the proof of concept assumes that the number of passengers of 
each type initially on board of any train service is 100. It also assumes that half of the passengers of each 
type on board of any train service alight upon its arrival at any stop. 

With regards to passenger activities, while waiting for boarding a connecting train, passengers spread 
relatively equally across a platform. They also give way to alighting passengers for about half of the dwell 
time before boarding. Each boarding passengers is given a token (i.e. a ticket) for the train which they 
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plan to board. The proof of concept makes a simple assumption that passengers who wait for a connecting 
train will board the next one arriving on their platform. 

Table 2: Main mobility characteristics of the three passenger types.

A summary of mobility characteristics that differentiate three passenger types considered in this proof of 
concept is shown in Table 2. The specified speed distribution is used to assign a desired speed to a 
passenger when moving freely on a flat open surface. The vertical distance cost is used to differentiate 
passengers in terms of their preferences when doing route choice. For example, ‘fatSlowPassiv’ 
passengers will see stairs as costlier than elevators compared to ‘slimFastActiv’ passengers and thus 
would try to avoid them. Please note the above mobility characteristics and their values were chosen 
purely for demonstrative purposes. Apart from the parameters in Table 2, MassMotion uses a wide range 
of other parameters to characterise the movements and preferences of an agent. The proof of concept 
assumes MassMotion’s default values for these parameters. Please refer to the MassMotion software 
manual (2016) for their complete descriptions. 

3.2 Simulation results

The order in which the MassMotion model of passenger movements is executed at each of the stations is 
shown in Table 3. This is the result from applying the algorithm described in Section 2.2 to the timetable 
of train lines in Table 1. 

Table 3: Execution order of Massmotion model of each station.

Simulation of passenger movements is first simulated for station S5 because it has the first train arriving 
across all network, which is at its platform 1 (stop P1S5) at 3:00:00. As another train arrives at the same 
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platform at 3:05:00, the simulation is paused at 3:04:59. This is because in general the total number and 
composition of passengers that will alight from this new train is unknown, which may be determined from 
the simulation of its previous stop or may be from a set of initial values (which is in this case). The next 
simulations take place at station S3 and station S4 because both have a train arriving at the same time at 
3:01:00. The simulation at both stations is paused at 3:03:59 because there is one train arriving at 
platform 1 of station S3 (stop P1S3) and one train arriving at platform 2 of station S4 (stop P2S4) at 
3:04:00. Subsequent executions of the passenger movement simulation at each station and their triggering 
event (as described in the remaining of Table 3) can be explained in the same manner. ‘EOT’ in Table 3 
denotes end time of the simulation triggered by the arrival of the last train at any station. For example, the 
last train arrives at station S1 is at platform 2 at 3:18:00, which triggers the simulation of passenger 
activities at this station. The end of this simulation cannot be determined from the arrival time of the next 
train but by a predefined value, which is set as 3:30:00 for this proof of concept. This is also the end time 
of the last simulation at other stations. 

 

 
Figure 4: Passengers alighting at station S2 in baseline scenario. 

In this proof of concept, station S2 serves as an interchange rail station which all train lines pass and 
where passengers arrive for transferring to a connecting train. Therefore, its simulation results would best 
demonstrate the impacts on the crowdedness and passenger experience at a station due to passenger 
demand and activities from other parts of the network, which the framework proposed in this study aims 
to achieve. To better illustrate and provide a comparative understanding of the trans-station effects of 
passenger demand and activities to crowdedness at station S2, we simulated another scenario (referred to 
as ‘90%Slim’ from now on) of the proof of concept. Differences between this new scenario and the 
original settings are summarised below. It shall be noted that none of the changes was applied to attributes 
of station S2 nor attributes of train services relating to it.  

 The total number of passengers arriving at stations S1, S3, S4 and S5 for boarding any train 
service remains 150. However, 90% of them are of passenger type ‘slimFastActiv’. The 
remaining 10% are equally split between the other two passenger types. 
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 The total number of passengers initially on board a train service arriving at stations S1, S3, S4 
and S5 remains 300. However, 90% of them are of passenger type ‘slimFastActiv’. The 
remaining 10% are equally split between the other two passenger types. 

The total number of passengers successfully alighting from a train at each platform at station S2 
throughout the simulation of the proof of concept is shown in Figure 4 and Figure 5. Please note that 
passengers alighting at platforms P1S2, P2S2, P3S2 and P4S2 are from trains on lines ‘line1’, ‘line2’, 
‘line3’ and ‘line4’, respectively. The higher proportion of ‘slimFastActiv’ passengers arriving at station 
S2 from all train lines in scenario ‘90%Slim’ compared to the ‘baseline’ scenario verifies that the 
framework satisfactorily manages and transfers passenger characteristics across stations of a train 
network. 

More interestingly, the total number of passengers alighting at S2 from each train line is consistently and 
considerably higher in scenario ‘90%Slim’ compared to the ‘baseline’ scenario. This could be attributed 
to more passengers successfully boarding at the previous stops as well as successfully alighting at S2 
(because there are more of them who are agile in scenario ‘90%Slim’). In fact, simulation results also 
show that the number of passengers successfully boarding a train at S2 is higher in scenario ‘90%Slim’ 
than in the baseline, and most of them are ‘slimFastActiv’, as demonstrated in Figure 6. 

 

 
Figure 5: Passengers alighting at station S2 in scenario ‘90%Slim’. 

Staircases and escalators were introduced into the presented model partly to enhance the sophistication of 
the proof of concept. More importantly they help highlight the capability of the framework in picking up 
the ripple effect of passengers’ behaviours and attributes to the built environment in different settings. 
More specifically, one implication of having more ‘slimFastActiv’ passengers at S2 is that the stairs at the 
station tend to be more occupied. Analysis of the number of passengers using stairs and escalators shows 
that 38.6% of passengers chose stairs over escalators in scenario ‘90%Slim’ whereas the ratio is only 
29.3% in the baseline scenario. 
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Figure 6: Passengers boarding at station S2. 

4 CONCLUSIONS 

This paper has presented a computational framework that links crowd simulation at transit stations. The 
proof of concept that applied the framework to simulate the passenger movements within and across a 
number of stations of a hypothetical urban train network illustrated the framework’s capability to capture 
the ripple effects of crowdedness and passenger demands at stations along a transit line.  

At the heart of the framework is an algorithm for coordinating the simulation of passenger movements at 
each of the stations, ensuring that results from the simulation at a station (e.g. the number of passengers 
successfully boarding and alighting) are properly and timely fed into the simulation at subsequent 
stations. Inherently, the algorithm for such coordination relies on a given timetable of train lines servicing 
the stations being simulated. However, the timetable can be revised on-the-fly to reflect changes in arrival 
time of a train at a station (e.g. from a transit line operation model). While such on-the-fly modification of 
the timetable is not yet in the current implement of the framework, only minor changes would be required 
to make this possible. The framework can then be helpful in capturing the mutual impacts of passenger 
build up and train operations and any amplification of delay at stations further down the line. Another 
suggestion for future development is the inclusion of the geometry of train carriages into the crowd model 
of a station, providing a seamless simulation environment of passenger movements. Apart from more 
realistically representing the train station environment, such inclusion would allow for more accurate 
simulation and estimates of the number of passengers boarding and alighting from a train. The class 
diagram of the framework would be revised to include carriage layout as an attribute of train services. 

Among challenges in applying the framework to simulating passenger movements at stations of an urban 
train network is the availability of data required as input into the framework. Most challenging would be 
the recording of the flow of passengers alighting from each train service to destinations within a station 
(e.g. station exits and other platforms). While automatic ticketing systems (e.g. the Opal card system 
deployed in New South Wales, Australia) can help partly with the quantities, they are unable to inform 
the behavioural and physical attributes of the passengers. Recent advents in image processing algorithms 
which efficiently extract passenger flow from video records from security cameras at train stations may 
provide a way forward for such a challenge. 
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