
EXPLICIT MODELLING AND SYNTHESIS OF DEBUGGERS FOR HYBRID
SIMULATION LANGUAGES

Simon Van Mierlo

Cláudio Gomes

University of Antwerp

{firstname.lastname}@uantwerp.be

Hans Vangheluwe

University of Antwerp

Flanders Make

McGill University

Hans.Vangheluwe@uantwerp.be

ABSTRACT

Any sufficiently complex system is best described (or specified) with a combination of models in multiple

formalisms. To support creating such “hybrid models”, recent research focuses on the (syntactic and

semantic) combination of formalism fragments. To implement the hybrid language’s operational semantics,

the simulators of each of the formalisms are combined. Inspired by this principle, we study how hybrid

simulators can be instrumented with debugging capabilities. Previous work has shown that an explicit model

of any simulator’s behaviour can be instrumented with common code debugging operations (e.g., stepwise

execution, breakpoints, pause/play) and simulation-specific operations (e.g., (scaled) real-time simulation,

event injection). We extend this work by combining debugging-enhanced simulators to create a hybrid

simulator, and instrument it with debugging support at the hybrid level. To demonstrate feasibility, we create

a debugging-enhanced simulator of the Hybrid Automata formalism, by embedding a Causal Block Diagrams

simulator in a Timed Finite State Automata simulator.

Keywords: Debugging, Hybrid Simulation, Modelling

1 INTRODUCTION

To deal with the increasing complexity of today’s (engineered) systems, a system is engineered/studied by: (1)

decomposing it into coupled components, and/or (2) identifying different aspects and treating them separately

(e.g., the control algorithm of an embedded system versus its power consumption) (Vangheluwe 2008).

Ideally, each of these components is modelled at the most appropriate level of abstraction, using the most

appropriate formalism(s) (Vangheluwe et al. 2002). For example, an automatic power window system (Denil

2013) is comprised of at least two sub-systems: the software controller and the window dynamics. A model

of the control sub-system represents decisions regarding (safe) interactions with the power window (e.g.,
what happens when the user presses a button, or when an obstacle is detected in the window), while an

electro-mechanical model determines the movements of the window.

In order to observe the global behaviour of the system, the behavioural models of each sub-system are

coupled. Since they conform to different formalisms, however, their interaction needs to be determined. It

can consist of input/output variables that can be accessed by both models during their coupled simulation—as

in co-simulation (Gomes 2016), or they can be more complex, realized through boundary concepts that do

not belong to any of the coupled formalisms—as in co-modelling (Boulanger et al. 2011, Jantsch and Sander

2005). We focus on the latter approach.

SpringSim-TMS/DEVS 2017, April 23-26, Virginia Beach, VA, USA
©2017 Society for Modeling & Simulation International (SCS)



Van Mierlo, Gomes, and Vangheluwe

A hybrid formalism needs sound operational semantics. In order to keep mistakes to a minimum and

reduce development efforts, existing simulators can be reused. Previous work concluded that a hybrid

formalism simulator should act as a coordinator between the simulators of the composed formalisms. In this

way, development effort is focused on the definition of the boundary concepts and interaction between the

simulators, both non-trivial but essential tasks (Mustafiz et al. 2016). In addition, if the existing simulators

provide debugging support, the hybrid formalism simulator should also allow for debugging. Debugging

is a well known, well practised, and important activity in the development of behavioural models (e.g.,
code (Zeller 2005), Statecharts (Mustafiz and Vangheluwe 2013), and DEVS (Van Mierlo et al. 2016)).

In this paper, we propose a novel way to construct hybrid simulators by modelling existing simulators

explicitly in a generic form that can be used for modular language composition and can be easily enhanced

with debugging support. This form, which we denote as the (hierarchical) canonical form, is based on the

commonalities between behavioural formalism simulators. Simulators in the canonical form are easy to

understand and can be (1) quickly enhanced with debugging capabilities (Contribution #1), and (2) systemat-

ically combined in a way that describes their non-trivial interactions and thus form a hybrid simulator with

debugging capabilities (Contribution #2). To demonstrate feasibility, we explore the composition of Timed
Finite State Automata (T-FSA) and Causal Block Diagrams (CBD) (Cellier 1991).

Structure Section 2 introduces the T-FSA and CBD formalisms and their simulators, as well as the SCCD
formalism, which is used to model the simulators’ behaviour. Section 3 explains the canonical form of

simulators, as well as how to enhance it with debugging. Section 4 describes the composition of the T-FSA
and CBD languages to form the (deterministic) hybrid automata formalism, as well as its debugging-enhanced

simulator. Section 5 discusses the validity of our approach. Section 6 presents related work, and Section 7

concludes the paper.

2 BACKGROUND

This section describes the background for the remainder of the paper. We start by explaining SCCD, a hybrid

formalism that combines Statecharts and Class Diagrams, with which we model the (debugging-enhanced)

simulators’ behaviour throughout the paper. Then, we introduce two formalisms: Timed Finite-State
Automata and Causal-Block Diagrams. A debugging-enhanced simulator for their combination (a hybrid

formalism) is constructed in Section 4.

2.1 SCCD

Statecharts (SC) is a well-known formalism for describing timed, reactive, autonomous system be-

haviour (Harel 1987). It consists of states and transitions between those states that are triggered by an

event (local to the SC model or coming from the environment) or a timeout and optionally have a guard.

States can be composed hierarchically in composite states (which have exactly one active child state), as well

as orthogonally in parallel regions (where each region has an active state).

SCCD (Van Mierlo et al. 2016) is a hybrid formalism that combines SC and Class Diagrams (CD).

An SCCD model is a class diagram where each class has attributes, methods, and an SC model, which

describes its behaviour. Its transitions can execute methods and change the attributes of the class instances.

Relationships between classes form communication channels (i.e., ports) over which each SC model can

communicate with the SC model of other instances by sending events.



Van Mierlo, Gomes, and Vangheluwe

Algorithm 1 T-FSA Operational Semantics.

1: function SIMTFSA(M , s0 evs , Δt)
2: clock ← 0
3: state ← s0
4: ε ← 0
5: while state �∈ FINALSTATES(M) do
6: continue ← true
7: while continue do
8: (evs, ei) ← POPEV(evs, clock)
9: if ei = ∅ then

10: tr ← TRELAP(M, state, ε)
11: else
12: tr ← TREV(M, state, ei)
13: end if
14: if tr �= ∅ then
15: ε ← 0
16: state ← TARGET(M, tr)
17: else
18: continue ← false
19: end if
20: end while
21: clock ← clock +Δt
22: ε ← ε+Δt
23: end while
24: return clock , state
25: end function

Algorithm 2 CBD Operational Semantics.

1: function SIMULATECBD(M,maxIters,Δt)
2: clock ← 0
3: state ← INITSIGNALS(M)
4: numIters ← 0
5: while numIters < maxIters do
6: g ← DEPGRAPH(M,numIters)
7: s ← LOOPDETECT(g)
8: for c in s do
9: if c = {gblock} then

10: state ← COMPB(c, state)
11: else
12: state ← COMPL(c, state)
13: end if
14: end for
15: clock ← clock +Δt
16: numIters ← numIters + 1
17: end while
18: return clock , state
19: end function

2.2 Timed Finite State Automata

Timed Finite State Automata (T-FSA) is a timed variant of Finite State Automata (Hopcroft et al. 2006),

with a single clock (Alur and Dill 1994), and is a simplified version of SC. A T-FSA model consists of a set

of states and transitions having optional triggers (an event from the environment or a condition on the amount

of time passed in the source state). There is one initial state and a subset of the states are final states.

Algorithm 1 condenses the main tasks of a T-FSA simulator. The main simulation loop processes zero or

more triggers, advances time, and keeps track of the current state and elapsed time.

The parameter M is the T-FSA model, s0 is the initial state of M , evs = {(t0, e0), (t1, e1), . . .} is a

sorted sequence of time-stamped events from the environment, and Δt > 0 denotes how much to

advance the simulated time at the end of each simulation step.

The state variable stores the current state of the T-FSA.

POPEV(evs, t) returns an event whose timestamp matches the parameter t, and the new sequence of

events minus the event returned. The null event ∅ is returned if there is no event at time t.
TRELAP(M, state, ε) returns a transition that is enabled by the elapsed time.

TREV(M, state, ei) returns a transition that is enabled by event ei.



Van Mierlo, Gomes, and Vangheluwe

child

parent

child

parent

child

parent
SimulatorTFSA
methods, attributes

behaviour (SC)

SimulatorTFSA_BS
methods, attributes

behaviour (SC)

SimulatorTFSA_SS
methods, attributes

behaviour (SC)

SimulatorTFSA_Trans
methods, attributes

behaviour (SC)

exe
cut
e

...

...

execute

execute

result

result

execute

resultresult

execute

execute
result

result

Figure 1: The hierarchical structure of the T-FSA simulator.

2.3 Causal Block Diagrams

Causal Block Diagrams (CBD) provide a way to represent a set of differential equations by means of

blocks and connections. Each block has (optional) inputs and one output, and it can either represent an

algebraic mathematical operation (e.g., summation or multiplication ) or a time-sensitive operation (integral

or derivative). A CBD model can additionally have input/output ports, representing signals (functions over

time) coming from/going to the environment.

The main simulation loop steps through simulated time and, at each time point, computes the output of every

block, based on its inputs. This is captured in Algorithm 2, adapted from (Vangheluwe et al. 2014).

The parameter M is the CBD model, maxIters controls the number of simulation steps to be performed,

and Δt > 0 denotes how much to advance the simulated time at the end of each simulation step.

The state variable is a vector with an entry per signal.

DEPGRAPH(M,numIters) returns the dependencies between the blocks.

LOOPDETECT(depGraph) returns the schedule of blocks and strongly connected components that

represent an algebraic loop.

COMPB(block) and COMPL(loop) compute the new value of the output signals of a block and an

algebraic loop, respectively.

More details about CBD simulation can be found in (Gomes et al. 2016).

3 MODELLING SIMULATION ALGORITHMS

Most often, simulators are implemented in program code. In previous work, we argue that program code

is not the most appropriate formalism to model the simulator’s behaviour, in particular when the simulator

needs to be augmented with debugging operations (Van Mierlo 2014) or combined with other simulators to

form a hybrid simulator (Mustafiz et al. 2016). Instead, a formalism capable of modelling the simulator’s

timed, reactive, autonomous behaviour natively is more appropriate. This section reviews the canonical form

of simulation algorithms and proposes an improved version based on hierarchical nature of many algorithms.

To properly model that hierarchy, we argue SCCD (Van Mierlo et al. 2016) is an appropriate formalism.

3.1 A Generic Simulator Template

We introduced the simulation algorithms for the T-FSA and CBD formalisms in Section 2 (Algorithm 1

and Algorithm 2). At a high level of abstraction, these algorithms are very similar, as they go through a set

of phases: (i) Initialization of simulation time and the simulation state; (ii) Execution of simulation ‘steps’



Van Mierlo, Gomes, and Vangheluwe

until an end condition is satisfied (the core of the algorithm, where a new state is computed based on the

previous one, and the simulation time is advanced); (iii) Finalization where, for example, the final state of the

simulation and the time at which it ended is communicated to the user.

Algorithm 3 Generic simulation algorithm.

1: function SIMULATE(M , params)

2: initialize(params)
3: while not endCondition() do
4: executeStep()
5: end while
6: finalize()
7: return getState(), getT ime()
8: end function

started

in::simulate
/ self.initialize()

statechart {inports: in; outports: out}

running

stopped

[endCondition()] /
 self.finalize(),
 out::state, out::clock

[not endCondition()] /
 self.executeStep()+ initialize()

+ endCondition()
+ executeStep()
+ finalize()

- state: SimulationState
- clock: float

Figure 2: The canonical form of the generic simulation

algorithm.

These phases yield a generic template, shown in Algorithm 3. Converting this high-level control flow to a

SCCD model is possible using the ‘de- and reconstruction’ technique presented in previous work (Van Mierlo

2014). The result is shown in Figure 2: we model a class Simulator which has the necessary attributes and

methods (whose implementation depends on the formalism being simulated). The behaviour of this class is

modelled in a SC model which executes the phases of simulation outlined above.

3.2 Hierarchical Canonical Representation

For the purposes of debugging and simulator composition, the instruction executeStep() in Algorithm 3 needs

to be further refined. There is a single notion of ‘step’: it is a computation which brings the simulation from a

state to the next and increases the simulated time. Upon closer inspection of Algorithm 1 and Algorithm 2,

an additional level of ‘steps’ can be discerned. Each ‘step’ (from now on: ‘big step’) consists of a series of

‘small steps’. In the case of T-FSA, a ‘big step’ executes as many transitions as possible, while a ‘small step’

executes one such transition. In the case of CBD, a ‘big step’ computes the new value of all signals in the

model, while a ‘small step’ computes the value of a single signal. This means the executeStep() function

can be expanded as a while-loop, which is preceded by an initialization phase and succeeded by a finalization

phase. In (Mustafiz et al. 2016), the authors differentiate analogously between a ‘macro’ and a ‘micro’ step,

and propose a flattened canonical form of the simulator. Their model does not mimic the hierarchical nature

of the simulation algorithm, however, neither does it exploit the similarity between the control flow of the

two levels. This makes it challenging to add debugging support in a modular, reusable way. We propose an

improved canonical form, where each level is modelled in a separate SCCD class, following the template

of Figure 2.

As an example, Figure 1 demonstrates the hierarchical canonical form for the T-FSA simulator: instead of

having one Simulator class, we have four: one for each level. The top-level simulator creates a new big step

simulator and requests it to compute the next iteration of the simulation until the simulation end condition is

satisfied. The big step simulator, in its turn, creates a new small step simulator and requests it to compute the

next state until the big step end condition is satisfied (i.e., no more transitions are enabled). The small step

simulator creates the lowest level simulator, which will simply be a function call that executes a transition.

Each level finalizes and communicates its results to the level above when its end condition is satisfied. The



Van Mierlo, Gomes, and Vangheluwe

user can start the simulation (by instantiating the top-level simulator) and wait until it finishes execution, then

inspect its results.

Analogously, a hierarchical canonical version for the CBD simulator can be constructed. In the next

subsection, we will explain how debugging operations can be added to the simulator’s behaviour.

3.3 Debugging

In general, there are three categories of debugging operations, which are either inspired by program debugging

operations or are simulation-specific:

[Time] These operations manipulate simulated time, a central concept to most simulations. Simulated time

can have different relations to the wall-clock time. Simulation can be run as-fast-as-possible (i.e., as fast as

the hardware of the executing platform and operating system allow), which means that the simulation clock is

simply a variable of the simulation. Models of timed systems can also be run in (scaled) real-time mode. In

that case, the simulated time is synchronized with the wall-clock time. The simulation then proceeds at the

same pace as the system it models. An optional scale factor can speed up or slow down simulation, while

retaining the linear relation between simulated time and wall-clock time. Simulations can also be paused. An

important consideration is the level of the simulation at which a pause occurs. We have opted to only pause at

the simulation level, immediately after a big step. This avoids ending up in an inconsistent simulation state

where some, but not all, small steps have been computed.

[Control] These operations manipulate the control flow of the simulation. The user can step through the

simulation. The user can be given control at any of the levels in the canonical form. For example, in a

two-level simulation algorithm, the user can be given a big step and small step operation. A breakpoint is an

automatic pause, depending on a constraint on the simulation state. This pause, similar to a manual pause,

occurs at the simulation level.

[State] These operations manipulate the simulation state. A god event allows the user to manually change

the simulation state. Its definition depends on the formalism. The user might be allowed to change the state

directly (in T-FSA, for example, changing the current state manually to a different state, or triggering a

particular transition that changes the current state) or indirectly (in T-FSA, for example, by injecting an event

at the current simulation time, which then triggers a particular transition).

In previous work (Van Mierlo 2014) we explain how the Statechart’s representation of a simulation algorithm

can be instrumented to enhance it with debugging operations. We apply the same procedure in this paper

and highlight the differences with previous work. Each level has to be instrumented, but only with relevant

operations. [Time] operations and breakpoints are only relevant at the simulation level (i.e., the outer

while-loop of Algorithm 1 and Algorithm 2), since that is the only level which has a notion of a clock

progressing and can be paused without leaving the simulator in an inconsistent state. The same is true for

[State] operations, which we assume can only be executed when the simulation is paused and bring the

simulation to a new consistent state. [Control] operations are relevant for all levels which execute a loop.

Indeed, those are the points at which we want to give control to the user to iterate manually through the loop

instead of automatically.

By enhancing the simulation algorithm(s) with debugging support, their interfaces change, giving more

control to the user to interrupt and control the simulation algorithm using events:

• continuous runs the simulation as-fast-as-possible.



Van Mierlo, Gomes, and Vangheluwe

Legend

Initial State

Pass_Up

T-FSA State CBD State

e
Event State Event

Started
Neutral

Pass_Down
Driver_Down

Driver_Up

Obj_Detected

stop or

p_up

d_down

d_up

p_down

stop or

stop or

d_down d_up

sto
p or

or

S

(a) Example hybrid model of the power window system.

when(Fo100 +)

p_up

d_up

after(1.0)

stop

0 2 4 6 8

Time (s)

Ev
en

t

Started

Neutral

Pass_Down

Driver_Up

Pass_up

Obj_Detected

0 2 4 6 8

Time (s)

St
at

e
0.0

0.1

0.2

0.3

0.4

0 2 4 6 8

Time (s)
H

ei
gh

t (
m

)
(b) Example trace.

Figure 3: The example model and its simulation trace.

• realtime runs the simulation in real-time. It accepts an optional parameter: the realtime scale.

• pause pauses a running simulation after the current big step has finished (or, if the simulation is in

real-time mode and in a waiting period, it returns immediately).

• add_breakpoint, del_breakpoint, toggle_breakpoint are used for breakpoint management.

• god_event changes the current state. In T-FSA, the user can manually enable a transition, which is

executed in the next small step. In CBD, the user can manually change the value of a signal.

This debugging interface is used in the next section to create a debugging-enhanced hybrid simulator.

4 HYBRID AUTOMATA

The Hybrid Automata formalism inherits its syntax from both T-FSA and CBD. It has states and transitions,

which are triggered by events and optionally have a guard. States, however, can now contain a CBD model,

which is simulated when that state is entered. A transition whose source state contains a CBD model can be

triggered by a boundary crossing condition, which depends on an output value of the CBD model.

Figure 3a shows the (partial) hybrid model for the power window system. The overall modes of the power

window are depicted as a T-FSA. The Driver_Down state’s CBD model is expanded, representing the



Van Mierlo, Gomes, and Vangheluwe

SimulatorHybrid
methods, attributes

behaviour (SC)

SimulatorTFSA SimulatorTFSA_BS SimulatorTFSA_SS SimulatorTFSA_Transchild

parentmethods, attributes

behaviour (SC)

methods, attributes

behaviour (SC)

methods, attributes

behaviour (SC)

methods, attributes

behaviour (SC)

SimulatorCBD SimulatorCBD_BS SimulatorCBD_SS SimulatorCBD_Block
methods, attributes

behaviour (SC)

methods, attributes

behaviour (SC)

methods, attributes

behaviour (SC)

methods, attributes

behaviour (SC)

ch
ild

_t
fsa

child_cbd

pa
re

nt

parent

child

parent

child

parent

child

parent

child

parent

child

parent

Figure 4: The hierarchical structure of the T-FSA-CBD simulator.

dynamics of the window when going down. Multiple transitions are triggered by a boundary crossing

condition: when an object is detected, or when the window reaches the bottom and top of its frame. Figure 3b

shows an example simulation where the passenger raises the window until an object is detected (at time 4).

The model moves to state Obj_Detected where the window is being lowered for 1 second.

Due to space constraints, the simulation algorithm for the hybrid T-FSA-CBD simulator cannot be shown.

It is, however, a merge of the algorithm for T-FSA presented in Algorithm 1 and the CBD simulator in

Algorithm 2. Intuitively, the simulation algorithm can be broken down as follows:

1. The simulation is initialized as in the T-FSA algorithm, with one difference: the Δt parameter is set

to the minimum of the Δt parameters for the two simulators, guaranteeing the same level of accuracy

as in the individual simulators.

2. An outer-while loop executes the model until an end state has been reached, or if at any point, the

currently executing CBD model has reached its maximum number of iterations.

3. At the start of a big step, the algorithm checks whether the current state contains a CBD model. If

this is the first time the state was entered, the model is initialized. Then, its next iteration is computed,

by invoking the child CBD model’s simulator.

4. After the iteration is computed, the algorithm checks whether any state events occur: these are

boundaries that are crossed by continuous variables in the CBD simulation. These boundary crossings

are translated to T-FSA events and can trigger a transition.

5. A T-FSA small step is executed as usual: the next event is read from the environment and a transition

is executed if any is enabled. Transitions can now also be triggered by state events, but events from

the environment get priority.

This can be seen as a protocol which meaningfully combines the semantics of both simulators and is

implemented by the hybrid simulator, which appropriately calls its child simulators. The implementation

of this protocol is made possible only when the child simulators’ interface provides adequate control. We

observe that in our explanation of the algorithm above we refer to three debugging operations:

• In Item 3, one big step of the CBD simulation algorithm is executed.

• In Item 4, a transition is triggered by a state event. It is, for the child T-FSA simulator, an outside

force which enables it, corresponding to a god event.
• In Item 5, one small step of the T-FSA simulation algorithm is executed.

In Figure 4, the hierarchical composition of the hybrid simulator is shown. The protocol of the simulation

algorithm, as well as boundary concepts (such as state event detection) is implemented by the hybrid simulator.

It has two child simulators, whose behaviour it controls through their exposed debugging interfaces.

The hybrid simulation algorithm can be fit into the generic template of Figure 2. The concept of ‘big step’,

‘small step’, state, and time operations remain unchanged from the ‘master’ T-FSA algorithm. The T-FSA



Van Mierlo, Gomes, and Vangheluwe

simulator processes states containing a CBD model as normal T-FSA states, and it controls how simulated

time advances. The hybrid simulator is responsible for invoking the CBD simulators for states containing a

CBD state. God events can enable a transition at the T-FSA level.

These debugging operations are also valid at the CBD level, however. A user debugging a hybrid simulation

might want to step through CBD block computations or change a signal value through a (CBD) god event.

Because of the hierarchical nature of the formalism (CBD models are contained in T-FSA states), we define a

step into debugging operation. This operation is valid when the simulation is paused, and the current T-FSA
state contains a CBD model. It switches the execution context to the CBD simulator and allows regular

debugging interaction at that level. The user can then execute a big step, a small step, or a god event. When

a big step finishes, control is returned to the hybrid simulator. Our implementation can be found online:

https://msdl.uantwerpen.be/git/claudio/MLE/src/master/debugging_fsa_cbd_composition.

5 DISCUSSION

We propose a modular, generic, and repeatable method for constructing a debugging-enhanced hybrid

simulator which composes two (or more) existing simulators. It is modular, since the child simulators of

the hybrid simulator do not have to be modified and can be unaware of their role in the hybrid simulation.

It is generic, as we rely on a hierarchical canonical form modelled in SCCD. It is repeatable, since the de-

and reconstruction technique has been established before and consists of a fixed number of steps that can be

applied to any formalism. We put debugging operations forward as the main enablers of meaningful semantic

composition of formalisms.

The resulting hybrid simulator satisfies the properties outlined in (Mustafiz et al. 2016):

• Language Continuity: the (hybrid) simulator’s behaviour needs to behave as the original simulator

if it simulates a plain T-FSA model. If no states contain a CBD model, then the hybrid simulator will

never invoke the CBD simulator, and no state events occur. Consequently, only the T-FSA simulator

will be invoked throughout the simulation.

• Step Progression: for valid models, the simulation always advances and will eventually meet the end

condition. A big step of the hybrid simulator consists of executing a big step of the T-FSA simulator,

which, for valid models, always terminates and advances time.

• Step Synchronization: there is an algebraic relation between the simulated time of the different

simulators, or between the rates at witch they progress. In the hybrid simulator, the CBD and T-FSA
simulated times are not the same but they advance at the same rate.

Additionally, the hybrid simulator offers debugging operations and satisfies the following properties:

• Continuity: if the user does not use any of the debugging features, the simulator’s behaviour does

not differ from its non-instrumented version.

• Soundness: a pause request by the user will pause the simulation in a consistent state.

• Big Step-Small Step Correspondence - A big step and a small step in the debugger of the T-FSA
formalism has the same behaviour as a big step and small step in the hybrid formalism. The same

applies to the CBD big step and small step if the user steps into a state containing a CBD model.

Enhancing a simulator with debugging operations is well-suited to (partly) automate once the simulators are

in the hierarchical canonical from. We leave this as future work, as well as the automatic generation of the

hybrid simulator, which was touched upon in (Mustafiz et al. 2016).



Van Mierlo, Gomes, and Vangheluwe

The hybrid simulation algorithm relies on the debugging operations implemented by the individual simulators.

Our approach is thus only valid on debugging-enhanced simulators. Currently, our approach is white-box,

since we assume the source code is available to de- and reconstruct the simulator. We also assume a set of

specific debugging operations are implemented, which is not necessarily the case for arbitrary debugging-

enhanced simulators. For example, we need a ‘big step’ and ‘small step’ operation, as well as a particular

‘god event’ operation. If there is a mismatch between useful debugging operations and useful operations for

language composition, our approach might not be valid for all simulators, especially those that have a limited

interface (or none).

One interesting related area is co-simulation, where different simulators are linked together by an orchestration

algorithm. In the FMI standard (Blockwitz et al. 2012), each simulator only exposes a limited interface

allowing the orchestrator to advance the algorithm one ‘step’. As we have shown, if more flexible language

composition is required, each simulator has to expose a finer grained interface (e.g., distinguishing between

big and small steps).

6 RELATED WORK

While program debugging is an active research area, it is not the focus of this paper. It does, however, provide

a foundation. (Zeller 2005) presents an overview of the state of the art in program debugging. We are inspired

by (Mannadiar and Vangheluwe 2011), where the authors describe how program debugging operations can

be transposed onto the modelling domain. Many of our operations are transpositions of existing debugging

operations, although we add a number that are simulation-specific.

Both (Buchanan and Keefe 2014) and (Pop et al. 2014) describe how a simulator can be fit to provide

debugging support. In (Pop et al. 2014), the focus is on the Modelica language, whereas in (Buchanan

and Keefe 2014), the authors target a language-independent discrete-event simulator. In contrast, our

approach can potentially be used to provide debugging support to any hybrid simulator, resulting from the

composition of two simulators. We apply the ‘de- and reconstruction’ technique, already applied to Parallel
DEVS (Van Mierlo et al. 2016) and CBDs (Vangheluwe et al. 2014), to obtain a generic, hierarchical,

canonical version of each simulator, needed to create the debugging-enhanced hybrid simulator.

In (Boulanger and Hardebolle 2008), the ModHel’X allows a user to code a semantic adaptation between a

main model (e.g., the T-FSA controller) and an embedded one (e.g., the CBD dynamics). This adaptation is

done at the model level, and can thus be specialized for different models. In our case, the adaptation is done

at the simulator level, independent of the concrete models being simulated.

Co-simulation can be seen as a more restricted approach towards semantic adaptation, where simulators

are allowed only to communicate at the end of macro-steps. In (Denil et al. 2015), the authors propose a

Domain Specific Language (DSL) for the specification of common semantic adaptations. The work builds on

(Boulanger and Hardebolle 2008), so the adaptations are specific to the models being coupled, as the authors

point out. Ptolemy (Eker et al. 2003) offers debugging capabilities and allows the modeller to compose

models from different formalisms. While a very flexible approach, the adaptations between the formalisms

are fixed, in contrast to our work.

7 CONCLUSION

We present a novel method for constructing a debugging-enhanced simulator for hybrid formalisms composed

of two or more formalisms. To add meaningful debugging to each simulator, we introduce a new, hierarchical



Van Mierlo, Gomes, and Vangheluwe

canonical form that reflects the hierarchical nature of many simulation algorithms. We assume each formal-

ism’s simulation algorithm is modelled in its canonical form as a SCCD model. The simulation algorithm

(i.e., the protocol between the existing simulators of the child formalisms) is implemented by modelling it

explicitly using SCCD as well. It makes use of the debugging interface provided by its child simulators for

operations such as ‘big step’, ‘small step’, and ‘god event’. We show that these operations are necessary to

build a meaningful hybrid simulator. Debugging support is added at the hybrid level, and a new ‘step into’

debugging operation is implemented to allow switching to the simulator of the lower-level formalism. In the

future, we envision (partly) automating our approach. We also plan to prove correctness properties on the

constructed hybrid simulator. Last, we will apply our techniques to commercial simulators to demonstrate

their generality.

ACKNOWLEDGEMENTS

This work was funded by Flanders Make vzw, the strategic research centre for the manufacturing industry,

and with PhD fellowships from the Agency for Innovation by Science and Technology in Flanders (IWT).

References

Alur, R., and D. L. Dill. 1994. “A theory of timed automata”. Theoretical Computer Science vol. 126 (2), pp.

183–235.

Blockwitz, T., M. Otter, J. Akesson, M. Arnold, C. Clauss, H. Elmqvist, M. Friedrich, A. Junghanns, J. Mauss,

D. Neumerkel, H. Olsson, and A. Viel. 2012, nov. “Functional Mockup Interface 2.0: The Standard for

Tool independent Exchange of Simulation Models”. In 9th International MODELICA Conference, pp.

173–184. Munich, Germany, Linköping University Electronic Press; Linköpings universitet.

Boulanger, F., and C. Hardebolle. 2008. “Simulation of Multi-Formalism Models with ModHel’X”. In

Software Testing, Verification, and Validation, 2008 1st International Conference on, pp. 318–327.

Boulanger, F., C. Hardebolle, C. Jacquet, and D. Marcadet. 2011. “Semantic Adaptation for Models of

Computation”. In 11th International Conference on Application of Concurrency to System Design
(ACSD), pp. 153–162.

Buchanan, C., and K. Keefe. 2014, September. “Simulation Debugging and Visualization in the Möbius

Modeling Framework”. In Proceedings of the 11th International Conference on Quantitative Evaluation
of Systems (QEST), pp. 226–240.

Cellier, F. E. 1991. Continuous system modeling. New York, Springer-Verlag.

Denil, J. 2013. Design, Verification and Deployment of Software Intensive Systems - A multiparadigm
approach. Ph. D. thesis, University of Antwerp.

Denil, J., B. Meyers, P. D. Meulenaere, and H. Vangheluwe. 2015. “Explicit Semantic Adaptation of Hybrid

Formalisms for FMI Co-Simulation”. In Proceedings of the Symposium on Theory of Modeling &
Simulation: DEVS Integrative M&S Symposium, edited by SCS, pp. 99–106. Alexandria, Virginia.

Eker, J., J. Janneck, E. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer, S. Sachs, and Y. Xiong. 2003, jan.

“Taming heterogeneity - the Ptolemy approach”. Proceedings of the IEEE vol. 91 (1), pp. 127–144.

Gomes, C. 2016. “Foundations for Continuous Time Hierarchical Co-simulation”. In ACM Student Research
Competition (ACM/IEEE 19th International Conference on Model Driven Engineering Languages and
Systems), pp. to appear. Saint Malo, Brittany, France.



Van Mierlo, Gomes, and Vangheluwe

Gomes, C., J. Denil, and H. Vangheluwe. 2016. “Causal-Block Diagrams”. Technical report.

Harel, D. 1987, June. “Statecharts: a Visual Formalism for Complex Systems”. Science of Computer
Programming vol. 8 (3), pp. 231–274.

Hopcroft, J. E., R. Motwani, and J. D. Ullman. 2006. Introduction to Automata Theory, Languages, and
Computation (3rd Edition). Boston, MA, USA, Addison-Wesley Longman Publishing Co., Inc.

Jantsch, A., and I. Sander. 2005. “Models of computation and languages for embedded system design”. IEE
Proceedings - Computers and Digital Techniques vol. 152 (2), pp. 114–129(15).

Mannadiar, R., and H. Vangheluwe. 2011. “Debugging in Domain-Specific Modelling”. In Software Language
Engineering, edited by B. Malloy, S. Staab, and M. Brand, Volume 6563 of Lecture Notes in Computer
Science, pp. 276–285. Springer Berlin Heidelberg.

Mustafiz, S., C. Gomes, B. Barroca, and H. Vangheluwe. 2016. “Modular Design of Hybrid Languages by

Explicit Modeling of Semantic Adaptation”. In Proceedings of the Symposium on Theory of Modeling &
Simulation: DEVS Integrative M&S Symposium, DEVS ’16, pp. 29:1—-29:8. San Diego, CA, USA.

Mustafiz, S., and H. Vangheluwe. 2013. “Explicit Modelling of Statechart Simulation Environments”. In

Proceedings of the 2013 Summer Computer Simulation Conference, pp. 21:1—-21:8.

Pop, A., M. Sjölund, A. Ashgar, P. Fritzson, and F. Casella. 2014. “Integrated Debugging of Modelica

Models”. Modeling, Identification and Control vol. 35 (2), pp. 93–107.

Van Mierlo, S. 2014. “Explicit Modelling of Model Debugging and Experimentation”. In Proceedings of the
Doctoral Symposium at MODELS’14.

Van Mierlo, S., Y. Van Tendeloo, B. Meyers, J. Exelmans, and H. Vangheluwe. 2016. “SCCD: SCXML

Extended with Class Diagrams”. In 3rd Workshop on Engineering Interactive Systems with SCXML, part
of EICS 2016.

Van Mierlo, S., Y. Van Tendeloo, and H. Vangheluwe. 2016. “Debugging Parallel DEVS”. SIMULATION.

Vangheluwe, H. 2008. “Foundations of Modelling and Simulation of Complex Systems”. EASST vol. 10.

Vangheluwe, H., J. De Lara, and P. J. Mosterman. 2002. “An introduction to multi-paradigm modelling and

simulation”. In Proceedings of AIS2002 (AI, Simulation & Planning), pp. 9–20, SCS.

Vangheluwe, H., D. Riegelhaupt, S. Mustafiz, J. Denil, and S. Van Mierlo. 2014. “Explicit Modelling of

a CBD Experimentation Environment”. In Proceedings of the Symposium on Theory of Modeling &
Simulation - DEVS Integrative, TMS/DEVS ’14, pp. 379–386, SCS.

Zeller, A. 2005. Why Programs Fail: A Guide to Systematic Debugging. San Francisco, CA, USA, Morgan

Kaufmann Publishers Inc.

AUTHOR BIOGRAPHIES

SIMON VAN MIERLO is a PhD student at the University of Antwerp (Belgium). For his PhD, he is

studying how modelling formalisms, environments, and simulators can be enhanced with debugging support.

CLÁUDIO GOMES is a PhD student at the University of Antwerp (Belgium). The topic of his PhD is the

foundations of co-simulation.

HANS VANGHELUWE is a Professor at the University of Antwerp (Belgium), an Adjunct Professor at

McGill University (Canada) and an Adjunct Professor at the National University of Defense Technology

(NUDT) in Changsha, China. He heads the Modelling, Simulation and Design (MSDL) research lab. His

research interest is the multi-paradigm modelling of complex, software-intensive, cyber-physical systems.


