THROUGH THE VIRTUAL BARRIER: VIRTUAL PROTOTYPING AND ANALYSIS
WITH MODEL-BASED SYSTEMS ENGINEERING

Omar Valverde Larry Sun
The MITRE Corporation The MITRE Corporation
202 Burlington Road, Bedford, MA, USA 202 Burlington Road, Bedford, MA USA
ovalverde@mitre.org larrys@mitre.org

ABSTRACT

The International Council on Systems Engineering (INCOSE) Vision 2025 states that advancing Model-
Based System Engineering (MBSE) beyond its current state of practice should include full integration with
other engineering models, representation of different characteristics of a system with different models, and
utilization of immersive technologies for efficient shared human understanding of systems. Accomplishing
these goals would address frequent weak communication links between system users and system developers
and facilitate the development of systems that are adaptable to changing operational environments. A
literature review performed identified video game engines as a technology that can enable the
accomplishment of INCOSE’s goals, and a framework is proposed that augments the functionality and
capabilities of model-based systems engineering with this technology. The initial framework prototype
developed for a ground vehicle is described. This research is directly applicable to many issues that have
been present in system development programs across the United States government.

Keywords: Model-Based Engineering, Virtual Prototyping, Video Game Technology

1 INTRODUCTION

In 2014 the International Council on Systems Engineering (INCOSE) published the Systems Engineering
Vision 2025 where goals were put forth for advancing the state of practice of Systems Engineering.
Specifically, SE Vision 2025 laid out the following three goals in order to advance Model-Based Systems
Engineering (INCOSE, 2014):

1. Formal systems modeling is standard practice for specifying, analyzing, designing, and verifying
systems, and is fully integrated with other engineering models.

2. System models are adapted to the application domain, and include a broad spectrum of models for
representing all aspects of systems.

3. The use of internet-driven knowledge representation and immersive technologies enable highly
efficient and shared human understanding of systems in a virtual environment that span the full life
cycle from concept through development, manufacturing, operations, and support.

The aim behind model-based systems engineering is to migrate from a document centric practice to a model
based practice. System models are generally descriptive models that are represented in graphical modeling
languages such as the Unified Modeling Language (UML) or its extension, the Systems Modeling Language
(SysML). Sanford Friedenthal illustrated in his book, 4 Practical Guide to SysML, a figure which is shown
here as Figure 1 (Friedenthal et al. 2015).

SpringSim-ANSS 2017, April 23-26, Virginia Beach, VA, USA
©2017 Society for Modeling & Simulation International (SCS)

Valverde and Sun
This figure shows how a system model can serve as a consistent source for engineering truth with
traceability between the following:

e system specifications and documentation
e results from analytic models
e engineering domain analysis and tools

Exact use of the system model is dependent on the MBSE approach taken.

traceability Structure Benavior analysis A iﬁb
rationale = 5 - needs Vv

ulromonu ” g ' | ‘ , - doediom
. L l performance

e —— - I . discrete event
System viewpoint Nl estimates
Documentation _] —
} network
Requwements Parametrics
System Model (SysML) Analysis Models
, syt‘lnmework 1«1 \
Electrical Testing
Mechaniont Design Deslgn Methods and
Design Models Models Models Models

Figure 1: Framework for Traceability and Analysis.

The elements within Figure 1 are owned by specific stake holders/decision makers of the system. Each of
these stake holders may utilize independent sets of tools to develop and/or asses the system. These tools are
brought together to form part of an overall integrated systems environment, shown in Figure 2 (Friedenthal
et al. 2015), that enables the framework in Figure 1. The tools within this environment, tightly or loosely
coupled, feed into various simulation and analysis scenarios and can be used for verification and validation
of the system. Ideally, there is an information/data exchange at each of the boundaries that is seamless and
eliminates the need for manual exchange of data. Facilitating this type of integration of tools for
information/data exchange has been undertaken by commercial, academic, and independent bodies in order
to move systems engineering into a more cohesive environment.

Systems Engineering

Mechanical Modeling Electrical Modeling Software Modeling

Requirements

Management

Simulation and
Analysis

Verification and Validation

Figure 2: Integrated Design, Development and Analysis Systems Environment.

Valverde and Sun

Verification and validation efforts seek to answer two questions:

e Are we building the right system?
e Are we building the system right?

Verification and validation can be performed with reference to the concept of operations (CONOPS)
developed for a system. However, the paper “Model-Based Concept of Operations Development Using
Gaming Simulation Preliminary Findings” (Korfiatis et al. 2015) highlights how the document based
method of capturing CONOPS leads to misunderstanding between the various stake holders and negligence
in updating the document as the system evolves. Thus, the authors establish the need for a shared mental
model through a graphical CONOPS. This graphical CONOPS leverages gaming engines to simulate the
current and future mission operations of a system. The authors propose this method as a way to bring a
mutual understanding of the system across the various stake holders.

A paper published by the Defense Acquisition University (Smith and Vogt, 2014) cited and expanded on
Dr. Korfiatis’s work. In this paper, the authors developed a notional systems engineering process to develop
a ground vehicle for the United States Army. This systems engineering process would utilize video games
as a way to allow the end users to “virtually kick the tires” of a new ground vehicle system. In essence, the
authors were looking at how to exploit gaming platforms as a way to virtually prototype systems.

The advances made in the physics engines used for video game platforms and the application highlighted
by the above papers seeded the idea of leveraging gaming technology in order to extend the capabilities of
model-based systems engineering and bring about INCOSE’s 2025 Vision. Gaming/virtual engines have
evolved from a single isolated game to a networked virtual platform with the capability to run many
mathematical calculations in the background. It can be inferred from data by the Entertainment Software
Association (2015) that approximately $1.4 — $3.8 billion is invested by video game companies in internal
research and development efforts. The development of Microsoft’s Hololens, the Oculus Rift, and other
virtual reality technologies are creating a much more immersive experience for the users.

Successfully augmenting MBSE capabilities with gaming technology would move the systems engineering
practice toward INCOSE’s 2025 vision by:

e Enabling the traceability of multiple engineering model outputs to system user interaction in an
operationally relevant scenario,

e Enabling the broad representation of various models in a virtual environment that can facilitate a
shared human understanding of systems, and

e Enabling an immersive environment where various stake holders can interact with the system(s) in
consideration.

2 THREE DOMAIN AREAS

The tools that would satisfy the elements in Figure 2 were categorized into three domain areas.
Requirements and systems engineering were categorized together as systems engineering tools (MBSE
tools). The middle row tools were categorized as engineering analysis tools. Simulation, verification and
validation can be done within a gaming environment due to the embedded physics engines that enable
virtual prototyping. As such, Figure 3 illustrates the three domain areas and the interfaces that would enable
information/data exchange. In the following sections, the state of practice in each area will be addressed.
Progress in establishing interfaces for data/information exchange between the tools within each domain
area will also be discussed.

Valverde and Sun

Systems 4
Engineering LA,
— — b _‘
¥ ‘\\ N
- “\\ A
N
Sy e el
w! e
E 12l
il i
Engineering Video Game
Analysis Platform

Figure 3: Domain Area and Current Interface Availability.

2.1 Area 1: Systems Engineering

MBSE tools that implement the Systems Modeling Language (SysML) have been developed in order to
migrate systems engineering from a document centered practice to a more model based approach. The
extension of SysML from the Unified Modeling Language (UML) has provided diagrams that are specific
to the requirements for a system. These requirements can be modeled directly in an MBSE tool or many
MBSE tools have the capability to integrate to other requirements tools (e.g. IBM DOORS). An example
of this would be the integration capability of a DOORS requirement database and IBM’s Rational
Rhapsody. SysML system models facilitate the traceability between requirements, use case and system
components and/or elements.

Many MBSE tools allow for the transformation of the descriptive system model into code (Java, C++, etc.)
The code representation of the model allows execution for further verification and validation, specifically
the behavioral aspects of the system. MITRE has used this ability extensively, and has leveraged this
capability in order to create a systems integration laboratory where the executable model is the backbone
that facilitates integration with other component models (Campbell, Garrett, and Wheeler, 2015).

2.2 Area 2: Engineering Analysis

Updates are continually made to various engineering analysis software packages. These updates can range
from computation algorithms to implementing academic advancements in the respective tool domain. This
cycle of research and implementation in engineering tools is well understood and will not be further
elaborated.

2.3 Area 3: Video Game Platform

As stated earlier, the video game industry is continually evolving. Application of gaming technologies for
non-entertainment purposes, termed serious gaming, has been implemented for various purposes beyond
those stated previously including differing engineering activities (Uskov and Bhuvana, 2014). The human-
in-the-loop aspect of gaming technology facilities an ability to capture user impact data (Kosmadoudi et al.
2013). Other applications of serious games include:

e (Citizen government participation (Ahmed et al. 2015)
e Democracy and Government Funded Video Games (Losh, 2006)

A more in depth overview of the evolution of gaming technologies beyond entertainment can be read in
Zyda (2005).

Valverde and Sun

2.4 Interface 1: Systems Engineering Tools — Engineering Analysis Tools

The idea of integrating engineering analysis tools with MBSE tools is not new and has been undertaken by
different commercial and academic bodies. The Object Management Group has developed the Functional
Mock-Up Interface (FMI) for model and data exchange between various engineering models (Blochwitz et
al. 2011). Third party tools, such as Phoenix Integration’s Model Center, have also developed the capability
to integrate system architectures via the SysML parametric diagrams with other engineering domain tools.
(Min et al. 2011). Integration via executable models and OpenMDAO has also been explored (Balestrini-
Robinson et al. 2015). There are also various standards that have been developed for multi-model simulation
(e.g. High Level Architecture).

2.5 Interface 2: Engineering Analysis Tools — Video Game Platforms

Though a direct interface between engineering analysis tools and video game platforms is not wide spread,
data and information exchange has occurred in various academic and commercial settings. Third party tools
have been developed to transform a CAD model to a 3D model compatible with the gaming environments
This has also been studied in the academic realm (Kosmadoudi et al. 2013). Gaming technology has been
used for data visualization (Lv et al. 2013). Gaming technology has also been used in the manufacturing
realm as seen in Duin, et al. (2011) and Stark (2010).

2.6 Interface 3: Systems Engineering Tools — Video Game Platforms

Review of the literature found this interface area to not be currently actively pursued. The notion of virtual
prototyping is seen in the literature such as McIntosh (2012) and Kande (2011). However, the virtual
environment utilized are purpose built and do not leverage the gaming industry available assets. Developing
the interface using the commercially available gaming engines would tap into the capabilities that are
already being developed by the commercial industry. This would alleviate upfront costs and labor, and lead
to the faster development of analysis environments. In short, successfully implementing an interface here
would facilitate three goals of systems engineering research (Mavris and DeLaurentis, 2000):

e Reduce initial costs by leveraging the commercial gaming industry R&D updates

e Increase system knowledge earlier in development by assessing system performance in operational
relevant scenarios earlier

e Maintain design freedom by evaluating multiple system options in operational environments

3 INITIAL PROOF-OF-CONCEPT PROTOTYPES

3.1 Single Instantiation Framework

The authors found it beneficial to expedite the production of a proof-of-concept framework prototype. Tools
and software packages familiar to the author were selected as a means to mitigate any time delays that
would occur due to learning curves. By leveraging these tools, the work focused on the integrating aspects
of the framework.

IBM’s Rational Rhapsody Developer was selected as the model-based systems engineering tool. Rational
Rhapsody has the capability to generate code in various programming languages. For the virtual
environment, Unity3D was used. Games and virtual environments developed in Unity 3D are written and
compiled in programming languages that differ from the code generation capabilities of Rational Rhapsody.
After exploring various options, it was decided that developing a methodology that overcomes the language
obstacle would set the path for a framework that could be tool agnostic.

The work and success of MITRE with Model-Based System Engineering and integration with executable
models provided a springboard for tackling the programming language obstacle. The authors of “Using
model based engineering to own the technical baseline” (Campbell et al. 2015) successfully integrated an
executable UML model in Rational Rhapsody with the ActiveMQ pub-sub messaging bus. Binaries online

Valverde and Sun

for ActiveMQ included those that were compatible with the language and compiling environment for
Unity3D.

The message format used to communicate between the Rhapsody model and Unity was based off simple
strings, and the messaging system was used in a publish-subscribe configuration. Though, it was recognized
that these are not the most efficient methods of transferring data when trying to achieve a real-time (or near
real-time) system execution, this was deemed good enough for the initial evaluation of what would have to
be modeled where (e.g. behavioral characteristics in MBSE, kinematics in the virtual environment).

The use of a messaging bus allowed the user-input to be abstracted out from the virtual environment. This
enabled future flexibility in the types of human interfaces that could be used (beyond the typical gamepads)
by decoupling the virtual environment and human interface and isolating messages that impacted only the
architecture. Due to this, normal game scripting conventions were not followed in order to facilitate the
integration with the Unity environment. Instead of directly sending the user input to the video game model,
the system physical calculations (e.g torque produced by the powertrain) would first be processed by the
architecture in the Rhapsody model using the input string message on the message bus, then the kinematic
physics were evaluated by Unity once it registered an update on the bus.

Figure 4 illustrates the initial framework that was developed. A ground vehicle was architected in Rational
Rhapsody using the SysML modeling language. A corresponding 3-D model was put into a notional virtual
environment. A synchronous relationship was developed between the vehicle behavioral states and
powertrain characteristics. For example, if an executing architecture indicated that the vehicle was off then
the virtual environment would not respond to any user input until the vehicle’s state was switched to on.

Figure 4: Initial Single Instantiation Framework.

The powertrain components’ (engine, transmission, and differential) performance characteristics were
modeled in the Rational Rhapsody with the resulting torque being sent via the messaging bus to the virtual
environment. The virtual environment would then apply the resultant torque on the vehicle 3-D model and
render the resultant reaction. As a simple example, in the equation force equals mass times acceleration,
Rational Rhapsody calculated the force while the virtual environment would output the corresponding
acceleration.

Valverde and Sun

Engine horsepower verses torque curves, transmission gear ratios, and differential ratio data were retrieved
from the Chevrolet website. By extracting the powertrain characteristics into Rational Rhapsody, various
powertrain configurations could be evaluated in the operational scenario by simply swapping out the
corresponding module in the architecture (i.e. swap out engine A for engine B).

3.2 Networked Framework Instantiation

Once a single architecture was successfully integrated with a virtual environment, work was conducted to
leverage the multiplayer network capabilities of virtual environments. Leveraging this capability would
support the goal of having multiple systems with their respective architectures interact in a single virtual
environment. This could then facilitate evaluating system of systems’ concept of operations. This type of
framework was termed a networked framework.

Figure 5 illustrates the initial networked instantiation. Each system representation within the networked
framework required its own respective architecture, human interface, and a client representation of the
virtual environment. A single messaging bus was utilized and it was kept on the same server where the
virtual environment would be hosted. A successful case study was conducted where two different ground
vehicles interacted in the same virtual environment. Each ground vehicle architecture had a different
powertrain instantiation (i.e. ground vehicle A had one engine and ground vehicle B had a different engine)
and a different human interface.

Server ‘ ;-—jii
& &

/ﬁ ’—MK

softwareJ [Model| softwareJ

UnityControIIer|Q . UnityControIIer|Q ‘

L Model

Messaging I ActiveMQ

Figure 5: Networked Framework Instantiation.

3.3 Further work

Issues that arose in the instantiated frameworks that will need to be addressed are the latency that can occur
due to the large amounts of messages being sent across the messaging bus. The sending, reception,
interpretation, and execution of each message has to be nearly real time. Due to this, system response began
to lag and thus affected the user immersion into evaluating the system. A temporary solution was
implemented that limited the amount of messages going across the message bus. However, the temporary
solutions cannot serve the long term needs nor the scalability of the framework. Work has already been
undertaken to address this issue and will be published subsequently.

Long term scalability for the framework would necessitate that the physics modeling be further extracted
from Rhapsody and be calculated utilizing tools that were designed for those purposes. As stated earlier,
work has already been done in integrating and interfacing engineering domain tools with model-based

Valverde and Sun

systems engineering tools. Work will be performed such that the next iteration of the framework will
complete the triangle illustrated in Figure 3 and Figure 6. In other words, the tools from the three domains
operating together in a single integrated systems engineering development and analysis environment.

In terms of networking, further work needs to be done to improve the execution of the simulations in a
networked environment. Current network implementations can result in a noticeable amount of movement
latency and inaccuracy when more than two clients are operating within the same simulation. Work will be
done to enhance the performance of the multiplayer experience to allow for a more realistic environment
in which to test scenarios. Further work must also be done to test the performance of the framework under
a heavier load with the addition of more clients to allow for a wider range of scenarios and configurations.

Systems
Engineering

E | -
a E L5
N ru) J |
it gl
Engineering Video Game
Analysis Platform

Figure 6: Interfaces Between the Three Domain Areas.

A methodology for evaluation and assessment of architectures in an operational relevant environment will
also be incorporated. This effort will leverage the work presented in Garcia and Tolk (2015).

4 CONCLUSION

The augmentation of model-based system engineering with virtual engines is a step in the direction of
helping realize INCOSE’s Vision 2025 for systems engineering. The executable aspects of an architecture
and representation in a virtual environment facilitates shared human understanding via virtual prototyping.
The work is ongoing in order to address the issues stated in the previous section. Also, case studies are
being designed and will be executed in order to assess how the use of this type of framework impacts the
overall decision-making process for system stakeholders.

ACKNOWLEDGMENTS

The authors would like to acknowledge Michael Dinsmore, Brian Marshall, Randall Hudson, and Jeremy
Lassetter from MITRE for their contributions and assistance throughout the research project. Michael
Dinsmore and Brian Marshall served as advisors to the project while the rest served as individual
contributors. Their technical talent allowed for this first year of the project to be a success. Also, we would
like to acknowledge Diana Carlson Valverde for her contributions on edits.

Valverde and Sun

REFERENCES

Ahmed, Alsanossi M., Qasim H. Mehdi, Robert Moreton, and Adel Elmaghraby. "Serious games providing
opportunities to empower citizen engagement and participation in e-government services." In Computer
Games. Al, Animation, Mobile, Multimedia, Educational and Serious Games (CGAMES), 2015, pp.
138-142. IEEE, 2015.

Blochwitz, Torsten, Martin Otter, Martin Arnold, Constanze Bausch, H. Elmqvist, A. Junghanns, J. Mauf}
et al. "The functional mockup interface for tool independent exchange of simulation models." In
Proceedings of the 8th International Modelica Conference; March 20th-22nd; Technical Univeristy;
Dresden; Germany, no. 063, pp. 105-114. Link6éping University Electronic Press, 2011.

Balestrini-Robinson, Santiago, Dane F. Freeman, and Daniel C. Browne. "An Object-oriented and
Executable SysML Framework for Rapid Model Development." Procedia Computer Science 44
(2015): 423-432.

Campbell, Dave, Garrett Wampole, and Tom Wheeler. 2015. "Using model based engineering to own the
technical baseline." Procedia Manufacturing 3. 1995-2002.

Duin, Heiko, and Klaus-Dieter Thoben. "Serious gaming for sustainable manufacturing: A requirements
analysis." In Concurrent Enterprising (ICE), 2011 17th International Conference on, pp. 1-8. IEEE,
2011.

Entertainment Software Association. "Essential facts about the computer and video game industry." (2015).

Friedenthal, Sanford, Alan Moore, and Rick Steiner. 2015. 4 Practical Guide to SysML: The Systems
Modeling Lannguage. Waltham: Elsevier.

Garcia, Johnny J., and Andreas Tolk. "Executable architectures in executable context enabling fit-for-
purpose and portfolio assessment." The Journal of Defense Modeling and Simulation: Applications,
Methodology, Technology 12, no. 2 (2015): 91-107.

INCOSE. 2014. A World in Motion: Systems Engineering Vision 2025. San Diengo: INCOSE.

Losh, Elizabeth. "Making things public: democracy and government-funded videogames and virtual reality
simulations." In Proceedings of the 2006 ACM SIGGRAPH symposium on Videogames, pp. 123-132.
ACM, 2006.

Lv, Zhihan, Alex Tek, Franck Da Silva, Charly Empereur-Mot, Matthieu Chavent, and Marc Baaden.
"Game on, science-how video game technology may help biologists tackle visualization
challenges." PloS one 8, no. 3 (2013): €57990.

Kande, Akshay. "Integration of model-based systems engineering and virtual engineering tools for detailed
design." (2011).

Korfiatis, Peter, Robert Cloutier, and Teresa Zigh. 2015. "Model-Based Concept of Operations
Development Using Gaming Simulation Preliminary Findings." Simulation & Gaming. SAGE
Publications.

Kosmadoudi, Zoe, Theodore Lim, James Ritchie, Sandy Louchart, Ying Liu, and Raymond Sung.
"Engineering design using game-enhanced CAD: The potential to augment the user experience with
game elements." Computer-Aided Design 45, no. 3 (2013): 777-795.

Min, Byung I., Aleksandr A. Kerzhner, and Christiaan JJ Paredis. "Process integration and design
optimization for model-based systems engineering with SysML." In ASME 2011 International Design
Engineering Technical Conferences and Computers and Information in Engineering Conference, pp.
1361-1369. American Society of Mechanical Engineers, 2011.

Mavris, Dimitri N., DeLaurentis, Daniel A. 2000. "A probabilistic approach for examining aircraft concept
feasibility and viability." Aircraft Design (Elsevier) 3 (2): 79-101.

Valverde and Sun

Mclntosh, Paul, Aleksandar Subic, Ka Wai Lee, Patrick Clifton, Pavel Trivailo, and Martin Leary. "An
adaptable virtual engineering platform for distributed design based on open source game technology."
Advances in Engineering Software 43, no. 1 (2012): 71-86.

Smith, Robert E., and Brian D. Vogt. 4 Proposed 2025 Ground Systems, Systems Engineering Process.
DEFENSE ACQUISITION UNIV FT BELVOIR VA, 2014.

Stark, Rainer, F-L. Krause, Christian Kind, Uwe Rothenburg, Patrick Miiller, H. Hayka, and H. Stockert.
"Competing in engineering design—The role of Virtual Product Creation." CIRP Journal of
Manufacturing Science and Technology 3, no. 3 (2010): 175-184.

Uskov, Alexander, and Bhuvana Sekar. "Serious games, gamification and game engines to support
framework activities in engineering: Case studies, analysis, classifications and outcomes." In /[EEE
International Conference on Electro/Information Technology, pp. 618-623. IEEE, 2014.

Zyda, Michael. "From visual simulation to virtual reality to games." Computer 38, no. 9 (2005): 25-32.

AUTHOR BIOGRAPHIES

OMAR VALVERDE is a Lead Systems Engineering in The MITRE Corporation within the Emerging
Systems Engineering Technologies Department. He holds a Master’s degree in Aerospace Engineering
from Georgia Institute of Technology. His e-mail address is ovalverde(@mitre.org.

LARRY SUN is an Emerging Technologies Software Engineer in The MITRE Corporation within the
Emerging Systems Engineering Technologies Department. He holds a Bachelor’s degree in Computer
Engineering from Boston University. His e-mail address is larrys@mitre.org.

