CO-SIMULATION OF CYBER PHYSICAL SYSTEMS WITH HMI FOR HUMAN IN
THE LOOP INVESTIGATIONS

Nicolai Pedersen Tom Bojsen
Department of Embedded Systems Engineering MAN Diesel & Turbo
Technical University of Denmark Teglholmsgade 35
Richard Petersens Plads, 2800 Kgs. Lyngby , Denmark 2450 Copenhagen, Denmark
nicp@dtu.dk tom.bojsen @man.eu
Jan Madsen

Department of Embedded Systems Engineering
Technical University of Denmark
Richard Petersens Plads , Building 324
DK-2800 Kgs. Lyngby , Denmark
jama@dtu.dk

ABSTRACT

The development of safety critical Cyber-Physical Systems (CPS) is highly dependent on human interaction
and cognitive assessment. Despite this dependency, the human in the loop is seldom an integrated part
of CPS development or tool chain. In this paper we propose a hybrid co-simulation environment, where
hardware, software and models can be interconnected, making it possible to connect a human machine
interface with a software representation of a control system and thermodynamic engine models. Scenarios
that require user interaction can be formulated and propagate from engine physics through the control system
to the engine operator. The environment makes it possible to investigate human interaction during system
development and gain more quantitative and evidence based data for designing safety critical CPS with
human-machine interaction.

Keywords: Co-simulation, HMI, FMI, Cyber-physical system, Embedded systems.

1 INTRODUCTION

Most Human Machine Interfaces (HMI) are not representative before connected to the actual hardware,
making their development delayed compared to the system development. Furthermore, real hardware and
test setups are often limited resources, especially when dealing with large or expensive equipment. The com-
bination of limited resources and delayed development makes it difficult to thoroughly investigate human
interaction and, therefore, to design systems tolerant towards user error and misuse. This paper proposes
an environment, where engineers can choose to connect both hardware, software and models in a hybrid
co-simulation. The environment makes it possible to connect the HMI to a software representation of the
control system before it is released to the hardware platform, in which case HMI and control system devel-

SpringSim-TMS/DEVS 2017, April 23-26, Virginia Beach, VA, USA
©2017 Society for Modeling & Simulation International (SCS)

Pedersen, Madsen, and Bojsen

Main Operating Panel Network
B p— ° Connection To Reaction
or operator makes Control System

decitions in response
to the alarm system
and GUl illustrations. Real Hardware

Marine Engineer (Cabled) (el
/Operator

The control engineer‘ @
designs GUI
componets and alarm
system. - Co-Simulation

(Simulated) iy

or

Control Enginner

The GUI developer L [
creates GUI panels
and verifies
appearance and Combination
composition

or

GUI Developer

Engine

Real Hardware
(Cabled)

or

Interaction

Two Stroke Large Bore Marine Engine

Co-Simulation Co-Simulation

Co-Simulation

Physics Modelling Environments ﬂ (Simulated) Software Controller R e pe—
II= [=I - N

Figure 1: Co-simulation connection options.

opment becomes more concurrent. Furthermore, the control system software can be combined with physics
models through the Functional Mockup Interface (FMI) co-simulation standard. It is possible to investigate
the human behavior during system development by tracking the user interaction. The hybrid co-simulation is
based on the work being done at MAN Diesel & Turbo, where the physics of a large bore two-stroke marine
engine is connected with the surrounding distributed control system and the human machine interface.

The HMI is shown in Figure 1 together with the three stakeholders. The marine engineer/operator is the
main user of the HMI interacting with the system according to bridge commands and in response to infor-
mation from the operating panel, alarm system, illustrations, etc. The control engineer developing control
algorithms for the control system is also a stakeholder.

The control engineer is responsible for developing the correct interaction possibilities and creates alarms
for new components. The work of the control engineer is, therefore, dependent on an understanding of the
cognitive assessment of the operator. Lastly, the Graphical User Interface (GUI) developer is responsible
for the user experience and the graphical representation of the system. All stakeholders are interconnected
and the communication and joint understanding between them are important. If for example the operator
needs to respond to an alarm, it is equally important that the alarm text, formulated by the control engineer,
is explanatory and that the user interface, made by the GUI developer, sufficiently attracts the attention of
the operator.

The hardware platform for the HMI is called the Main Operating Panel (MOP), it is a touch-screen interface
connected to the engine control system through the Ethernet. The switches connecting the MOP with the
controllers are in the co-simulation environment replaced with a SW implementation, which is termed a
virtual switch. The virtual switch is responsible for directing all network traffic between both simulated
controllers and real HW. To simulate an embedded controller is not trivial, how the Real Time Operating
System (RTOS) has been adapted to enable this will be described in Section 3. HW controllers and SW
controllers can be connected by introducing an additional "proxy" controller with the purpose to redirect [O
data through the virtual switch, this will not be covered in the present paper. Finally, the control system can
be connected to either the physical engine or to the engine models. The latter is achieved by implementing
the co-simulation version of the FMI standard (Blockwitz et al. 2012).

Pedersen, Madsen, and Bojsen

One of the aims with the proposed environment is to track the human interaction, when the user is presented
with specific scenarios. The interaction provides significant information to system developers regarding
operator behavior and may also be useful, when educating operators and marine engineers.

A comprehensive survey of the current state of human in the loop CPS efforts has been performed in (Nunes
etal. 2015). In (Gopalakrishna et al. 2017), dealing with machine-learning for human in the loop CPS, a new
way of determining the accuracy of an output based on a relevance score taking into account the variability
and bios of the human perception. Similar for most research in Human CPS (Gopalakrishna et al. 2017,
Nunes et al. 2015, Lieber and Fass 2011), is the acknowledgement of multidisciplinary technical challenges
and argument that the traditional development process, where human impact is not an integrated part of
the process, will not be sufficient for future products. Multiple co-simulation frameworks and tools for
investigating CPS are available. Commercial tools like MATLAB, Dymola and GT-Suite are widely known
but limited in their interconectivity. The Ptolemy project from Berkeley (Eker et al. 2003, Awais et al.
2013) and INTO-CPS (Larsen et al. 2016) aims to create a streamlined tool chain for the multidisciplinary
development of CPS. More specific projects like (Zhang et al. 2013) and (Zeller et al. 2010) work with
embedded systems using tools such as SystemC to produce co-simulations that can supplement HIL testing
and result in faster prototyping. An advanced co-simulation environment for development of HMI including
the human factor was presented in (Sixto et al. 2015). Here a new HMI aiding efficient human behaviour
in electrical vehicles was developed through a set of clinical user experiments, with good results. The
environment comprises a number of high-end automotive tool some connected by standard interfaces others
adapted to the environment, with no information regarding how the tool and simulation were connected.
Significant work has been aimed at co-simulation of different aspects of CPS development, however, very
limited research has been put into how to connect the human in the loop within a co-simulation environment.

This paper starts with an introduction of the HMI in Section 2 followed by a description of how the control
system has been adapted to enable co-simulation in Section 3. Section 4 describes the virtual switch, which
has been developed for connecting the HMI and the simulated control system. The FMI standard used
to connect the control system with thermodynamic engine models is explained in Section 5. Finally, the
thermodynamic models used in the proof-of-concept simulation are explained in Section 6. A simulation
scenario and the results following from it are presented in Section 7.

2 MAIN OPERATING PANEL

The Main Operating Panel (MOP) is the main HMI for engineers operating the engine. The MOP is a
marine approved and certified PC with a touch screen interface located on the engine control room panel.
From the MOP the engineer can carry out engine commands, adjust engine parameters, select running mode
and observe the status of the control system.

m NetWOT o

Engine Control Room Engine Room/on Engine Auxiliary Units w‘

(Not Covered)

s | O/ Calbl e

\

\
| |
Main Operation Panel ‘ Local Operation Panel ‘
MOP LoP ‘

00

Fiol Exhawst
boosm: valve

poston positon | L »
Ctinder | Cylinder 1 | Cynder 1 Cybnder

Figure 2: Engine control system communication diagram.

Pedersen, Madsen, and Bojsen

The communication between the MOP and engine control system controllers is Ethernet based. A MAN
Ethernet protocol driver connects the MOP with the Engine Interface Control Unit (EICU) as seen in Figure
2. The EICU is connected to the rest of the distributed system through the Engine Control Unit (ECU),
both EICU and ECU units are redundant for safety reasons. If for some reason the MOP is unavailable, the
engine can also be operated directly from a local operating panel located on the engine. Auxiliary systems
such as blowers, hydraulic pumps, exhaust gas recirculation and selective catalytic reduction units will not
be discussed in this paper. Every cylinder has a dedicated Cylinder Control Unit (CCU), which controls
the actuators responsible for fuel injection, valve opening/closing, lubrication, etc., according to sensor
feedback. Timing of the engine is governed by the ECU, which receives the crankshaft position by the
Tacho Interface Unit (TIU). The results presented in this paper are based on an example, where the operator
manipulates the exhaust gas bypass valve through the Scavenge air Control Unit (SCU).

3 SOFTWARE CONTROLLER

Embedded controllers installed on MAN Diesel & Turbo engines are multipurpose controllers, this implies
that they are hardware-wise identical only the software executed on the target determines the specific control
objective. The controllers interface with sensors and other computational units through network and cabling
and interact with the system through actuators. The controller contains a CPU module with an FPGA-based
embedded system running a RTOS. Our strategy for doing software in the loop simulations of the embedded
controllers is to replace the embedded board support package (BSP) with an x86 platform version and
to rewrite part of the functionality. This approach is partly discussed in (Pedersen et al. 2016). As a
consequence the simulation does not include the behavior of the embedded processor instead it will include
the target code executed on an x86 platform. Further abstractions and deviations will be presented below.

Simulation Manager Controller

> Simulation I/O Handler Simulation Network Driver
' 4
P Simulation Datatree Proxys Simulation Port
Update Network 4
(Virtual Switch)
Kernel Scheduler
Update 1/0 ¢
(Virtual Cables)
Update Datatree Variabels 3 Idle Event Handler

List Events(*callback,context*,time)
Get Next Event | —————————==——=——P -uint64_t next_event();
~(*0S_tick)(context)

-(*Net_interrupt)(context)
Tick controllers waiting to run -(*Timer_interrupt)(context)

I

> Idle_callback()

Wait for controlleres to return [
to Idle

Idle Thread

Linux Process

x86 Architecture Embedded Core

Shared Library

Figure 3: The software model of the embedded system and connection to the simulation manager.

3.1 System Clock

By modeling the controller software with an x86 BSP it is possible to execute the model on a regular
developer PC, however, controlling the execution is not possible. To gain control of the execution requires
access to the clock of the embedded system. Overwriting the BSP_idle_thread of the RTOS and introducing
a blocking idle_callback function to the simulation manager enable us to lock execution every time the

Pedersen, Madsen, and Bojsen

system is in idle. In this way a hook to the system clock is provided. When the controller reaches idle,
the execution is stopped and started again by releasing the callback that resembles a clock tick. To get a
concept of time we utilize that the OS execute every millisecond. By assuming that the system has sufficient
computational power to return to idle between every tick, we know that a millisecond has passed between
each OS tick. This guaranties a common perception of time across multiple controllers and a temporal
execution of the model.

Remark. Note, that we are basically assuming unlimited processing power so all tasks will finish and
never be interrupted before returning to idle. This could cause the simulation results to deviate from a
real stochastic execution. However, it ensures a deterministic simulation which is important during control
algorithm development and regression testing. Our system is currently dimensioned with sufficient computa-
tional power for this to have no significant consequences. The purpose of the co-simulation is not to replace
HIL testing but to aid engineers before doing hardware test.

3.2 Idle Event Scheduler

Overwriting the idle thread not only enables us to control the system clock, it also makes it possible to
introduce simulation functionality on the controller. An event scheduler is introduced in the idle thread to
execute external events not scheduled by the OS itself. Events consist of a call-back function to the interrupt
that needs to be executed, and the execution time for when the event needs to occur. In this way we are
able to schedule events such as network interrupt, IO observer timers and other high precision timers with
a resolution down to one microsecond on individual controllers. The event scheduler communicates with
the simulation manager and tells when the next event is due. This makes it possible for the manager to
orchestrate the simulation and maintain a common perception of time across the entire system.

3.3 Variables and 10s

On the target application all variables, parameters and IOs are organized in a component-oriented data tree
structure with unique IDs. We can create proxies for variables, parameters and 10 channels by using a factory
method design and by rewriting part of the application functionality. This provides a get/set functionality
that will effect the source on the specific controller. The 1O cabling is achieved by the simulation manager
by connecting virtual cables using the module and port typology of the embedded target. Communication
between controller input and output is done on a microampere level, simulating a real cable and activating
the conversion layers of the software.

3.4 Simulation Manager

The simulation manager illustrated in Figure 3 is responsible for orchestration of execution and data ex-
change. Each controller is compiled to a shared library and dynamically loaded by the manager, where it is
assigned an individual thread. The simulation is a loop, where the network is updated through the virtual
switch presented in Section 4. The factory method enables the manager to update data tree variables and
10s. The manager can access the idle event handler and get information about when a specific controller
needs to execute. Controllers that need to execute can be stated by releasing the semaphore, blocking their
idle callback. The controllers run in parallel and return to the manager, when returning to idle. The global
time is updated on the entire system and loop repeated.

A simulation without hardware is allowed to run as fast as possible but the simulation has to run in real-time
if hardware is connected. This is achieved by letting the process sleep after execution for the remaining

Pedersen, Madsen, and Bojsen

amount of time of the simulation time step.

Remark. Note, that simulating in real-time requires all models in the system to be able to run in real-time.
Highly complex physics models might not be able to fulfill this requirement. All models presented in this
paper are real-time compliant with the desktop hardware available to engineers at MAN Diesel & Turbo.

4 VIRTUAL SWITCH

Component Diagram Class Diagram

Linux Process RTOS (Controller) Port_base Virtual Switch
Virtual Switch
List Output Map Port
Simulation Port List Input < Map Mac_address

Virtual (*send)(package) PR ey
D o Virtual (*recive)(package) void Process_packages
Virtual (*net_interrupt)()
H Shared Library C 4
Adapt . . A
SBEC Simulation_port (RTOS) Tap_port (Linux)
Linux Network Bridge

(brctl)

Hardware Ethernet

Adapter (Eth0)
4 Controller_network_driver Tap_network_driver
Ethemet Cabls

Linux Kernel

Figure 4: Illustration of the virtual switch connecting the co-simulation with the HMI.

The virtual switch is the component that enables the co-simulation to connect with the MOP. The purpose
of the switch is to mimic a real switch. It runs in the simulation manager process and redistributes network
packages to ports according to a mac-address table. The switch has two types of ports, a simulation port for
the simulated controllers and a tap port for connected hardware. The components are illustrated in Figure 4.

4.1 Simulation Port

The simulation port instance contains input and output lists for network packages to and from the port. The
port is instantiated on the controller and a pointer is given to the switch running in the simulation manager.
This process is a Linux process. Data must be transferable between the manager and the shared library
RTOS controller. This is achieved by implementing three port delegates, these connect the RTOS network
driver and the switch described in Table 1.

Table 1: Port delegates

void(*send)(package) A method called from the RTOS network driver that moves a network
package from the controller to the output list of the port. The switch
can then access this package from within the Linux process and place
it in its own package buffer.

void(*net_interrupt)() A method called from the switch that simulates a network interrupt
on the controller. The interrupt is not allowed to execute, as it comes
from a Linux context. The interrupt schedules a high priority task
on the RTOS. The manager then allows the controller to run and the
network package can be received within the correct context.

Pedersen, Madsen, and Bojsen

void(*receive)(&package) | A method called from the RTOS network driver that moves a network
package from the input list of the port to the controller.

The switch is responsible for receiving packages from the port-output lists and moves them to the input lists
of the correct port according to the destination mac-address of the package Ethernet-header. The input and
output lists are protected by a semaphore to ensure that the lists are not accessed simultaneously.

4.2 Tap Port

The tap port is also an instance of the port class with the same components and functionality as the
simulation port described in Table 1. It implements the delegates to link the tap network driver instead of
the controller network driver. The net_interrupt() is allowed to execute directly, since the tap port is within
the Linux context. The tap network driver connects the port to a tap interface, a software network adapter
that only exists in the Linux kernel. The interface works as a regular network adapter, where the kernel
exchanges full Ethernet frames from and to the network driver instead of a regular wire. A Linux software
network bridge connects the tap interface with the physical Ethernet adapter that can be connected to the
MOP by wire as seen in Figure 4. Multiple tap interfaces can be created and ports instantiated making
it possible to connect the virtual switch to both the network of simulated controllers and the actual hardware.

Remark. It is important to notice that connecting an Ethernet interface destroys the determinism of the
co-simulation. This means that we can no longer ensure simulation reproducibility and that the system is no
longer appropriate for regression tests, etc.

S FMI

The Functional Mockup Interface (FMI) for co-simulation provides a standardized way of doing co-
simulation. In the FMI each subsystem model is solved independently with individual solvers and data
exchange occurring in-between calculations at so-called discrete communication points. A subsystem that
implements FMI is called a Functional Mockup Unit (FMU) and it is assembled as a zip-file containing all
the necessary components required to utilize the FMU. This paper will not explain the FMI standard in fur-
ther detail, see instead (Blockwitz et al. 2012, Pedersen et al. 2015). In (Pedersen et al. 2016) it is described
how our simulation manager complies with the FMI standard.

The simulation presented in this paper contains two FMUs. Firstly, the engine control system co-simulation
is wrapped as an FMU. It contains the simulation manager and 10 embedded controllers: EICU A/B, ECU
A/B, TIU, CCU 1-4 and the SCU as presented in Figure 2. Secondly, the thermodynamic engine model
presented in the following section is also an FMU. The engine model is developed in an internal C++
modeling tool that has been made compliant with the FMI standard.

6 THERMODYNAMIC ENGINE MODEL

The engine model is based on the MAN Diesel & Turbo 4T5S0ME-X test engine, a two-stroke compression-
ignition engine. It has four cylinders of 50 cm bore and a stroke of 2.2 m, and it generates 7,080 kW at
123 rpm. The model is an air-path model focused on the mass flows and pressures through the system. The
model has previously been published and validated in (Alegret et al. 2015) and is based on research done
by (Wahlstrom and Eriksson 2011, Hansen et al. 2013). In (Alegret et al. 2015) the model also include an
exhaust gas recirculation system (EGR). The EGR is not activated in the scenario presented here and will
therefore not be covered.

Pedersen, Madsen, and Bojsen

Exhaust Manifold
(Pext Texn)

Turbine

Wt

/c
/ Compressor
/

Scavenge-air
Manifold

Figure 5: Engine air-path model.

The components with dominating dynamics are seen in Figure 5 and described below. The turbocharger
consists of a turbine and compressor connected by a common shaft. The turbine is driven by the exhaust gas
from the engine and the generated power is transferred through the shaft to the compressor. The purpose
of the turbocharger is to balance the mass flow of air to the scavenge air manifold. The mass flows ritcom
and i, are described in maps provided by the turbocharger producer. The maps show the mass flows as a
function of pressure ratio and turbocharger velocity. The power delivered from the turbine and compressor
is used to setup a state equation expressing the turbocharger velocity w;,. Scavenge air and exhaust gas mani-
folds are modeled as control-volumes based on the ideal-gas law and conversion of mass with state equations
describing the pressure Py, and P,,. The engine is modeled as flow through a restriction (7itengrn , MengOur)
with a cylinder temperature 7,,;, based on the Seiliger cycle. The Exhaust Gas Bypass (EGB) is the only
component not presented in (Alegret et al. 2015). The EGB is redirecting the flow 7., from the turbine
inlet and is modeled as flow through a restriction.

e+1
. Pexh 276 Pegb }’% Pegh y): :|
“ “ “ V Re Texh Ye— 1 Pexh Pexh

where A, is the maximum EGB-valve orifice and U,,, the valve position, 7, is the ratio of specific heat,
R, is the exhaust-gas constant and P, is the back pressure from the subsequent system. The purpose of the
EGB is both to control the turbocharger equivalent area and to increase the energy for downstream systems
such as waste heat recovery.

The input to the model is EGB valve setpoint U, and engine load Ujyq, a non-dimensional power defined
as a percentage of the maximal power available for the specific engine. The remaining components are
assumed to have little impact on the air flow dynamics and are, therefore, disregarded. All cooling in the
system is assumed ideal meaning that the temperature of the gas leaving and entering a manifold is assumed
to have the exact same temperature. Heat transfer is also neglected, meaning that there is no temperature
drop, e.g. from the cylinder to the exhaust gas receiver.

7 SIMULATION & RESULTS

The aim of this project and the presented simulation scenario are to engage the human operator and track
the interaction with the simulation in a potentially hazardous situation.

The presented proof-of-concept scenario focuses on EGB control. When the EGB-valve is closed, the
turbine receives the full power from the exhaust gas. This increases the angular velocity of the common shaft
and, thereby, the compressor, causing the scavenge-air pressure (Py.4,) to raise. This is opposite to when the

Pedersen, Madsen, and Bojsen

EGB_position—m-|

~<—EGB_setpoin

HMI
(MOP)

EGB_position

EGB_setpoint
-<@——EGB_setpoint —s€p

ALARM______

Network Tel egray—

FMU FMU Virtual IO Cabl

Figure 6: The two FMUs and the MOP are illustrated with relevant cable and network connections.

EGB-valve is opened, where the flow to the turbine decreases and P4, drops. In certain situations both
scenarios can be very undesirable. If the turbine velocity increases too much the turbine may be destroyed
or even explode with extreme danger to the crew. If Py, drops significantly the engine may suffocate and
operation has to be stopped. These are of course extreme situations, where the safety-critical system has
not been working. With working safety systems these scenarios would cause the alarm system to notify the
operator and if no action is taken send a slow-down or shut-down command bypassing the operator. Slow-
down and shut-down commands are still very undesirable measures that severely limits the maneuverability
of the vessel. In this scenario the signals are sent between the units as seen in Figure 6. The scavenge air
pressure Py, and the turbocharger velocity @, will be provided by the engine model to the engine control
unit through simulated analog cables. The control setpoint of the EGB valve EGBjespoins and the actual
EGB-valve position EGB pesirion are connected directly to the scavenge air control unit. Within the control
system data is transferred by network telegrams between the controllers and the MOP. The tacho interface
unit and the four cylinder control units shown in Figure 6 are required to simulate the system properly. They
are connected to the MOP and running, however, they are not relevant for the presented scenario and will
not be covered. The control signal representing engine load Uj,,4 is normally a command from the bridge,
here it will be set at 40% load and provided internally in the engine model.

The simulation can be seen in Figure 7. The pressures start out stable at around 2.5 x 10° Pa, at 320 seconds
the EGB-valve is opened by the engine model. The turbine velocity then drops dramatically and with that
both Py, and P,,;, when Py, drops below the alarm limit of 1.75 x 103 Pa an alarm will be triggered on
the SCU and displayed on the MOP. The operator will see an alarm appear on the top bar and the alarm
list panel, which will look like the top figure of Figure 8. The simulation manager will track the alarm and
record how and when the operator responds. The operator will have to navigate to the Scavenge Air panel
as seen in the bottom figure of Figure 8. Here he has the option of either changing the EGB-valve setpoint
to 0% or set the EGB-controller in automatic mode which will likewise close the valve. Both actions will
cause an increased exhaust gas flow to the turbine and Py, will return to a stable level. In Figure 7 we see
how a MOP-command has ordered the valve to close at 750 seconds causing @; to increase and the pressure
returning to a stable level. The effects of closing the valve are delayed due to the dynamics of the system.

This is a simple example showing how it is possible to create scenarios in a valid thermodynamic model that
interacts with the complex control system connected to the HMI. Additional scenarios could be formulated
and information regarding interacting tracked.

Pedersen, Madsen, and Bojsen

N
o

scav

N
e
d

exh

- - - - Alarm level

N N
N »
:

N
T

Pressure [Pa]

0 500 1000 1500
Time [s]

1600

1500R

1400~

i i
1 1
1 1
1| 1
| |
— I 1
E 1 1
& 1 1
= 1300t X |
§ 1 1
2 : |
1200~ 1 1
| |

1100} | ----EGB

i : ----EGB,,,,
1 1
1000 ! L

o] 500 1000 1500

Time [s]
Figure 7: Plot of pressures and turbocharger velocity Figure 8: Top: Alarm system panel, Bot-
during the simulation scenario. tom: Scavenge Air panel.

8 DISCUSSION

In this section we will discuss the lessons learned from the experiment presented. To properly incorporate
the human in the loop, we believe that investigation of human interaction has to be an integrated part of the
CPS development. The traditional way of model based development, where human investigations are not
taking into account before the HIL stage, could be optimized using the hybrid co-simulation presented here.
With the hybrid co-simulation, human interaction can be investigated at any point of development.

From a survey of current research, it is clear that the multi-disciplinary nature of CPS development is the
main challenge. We believe that the solution to this is standardized interfaces for connecting the tools
each discipline prefer. The FMI standard plays a major part in this solution. Having a streamlined tool-
chain optimal for every engineering discipline, and with a convenient transition between every stage of
development, is very seldom and will often force companies to commit to a single tool provider. With the
FMI standard, every tool and simulation environment would, in principle, be connectable.

The main advantage of the FMI standard is its diversity and flexibility. FMI is based on C-code making it
platform independent and require nothing more then a C-compiler. Subsystem information is described in a
simple manner in an XML model description, making the interconnection configuration between subsystems
easy to manage. FMI provides an application interface, with a state machine, that needs to be implemented.
This state machine ensure that each subsystem is simulated in a similar fashion and that execution and
communication within the system is temporally correct. Even though you are forced to implement the
application interface, it is only the function calls FMI require, how they are implemented is completely
free. Implementing the standard to a custom simulation require some effort. This process is, however, well
documented and exemplified in (QTronic , Widl et al. 2013), making the task manageable. This level of
flexibility of cause come with some constrains. Especially, the way of exchanging data between subsystems

Pedersen, Madsen, and Bojsen

is limited. The only data types that can be exchanges are "Real","Integer","Boolean" and "String". There
is no possibility to exchange e.g. arrays or any advanced data-objects, which can be inconvenient. In
our case when adapting our SIL simulation environment, most of our data-types were fix-point types and
similar. This required us to create a complete conversion layer between FMI data-types and internal data-
types. Furthermore, the data-exchange is based on a Get/Set functionality, when the system and connection
amount grow this become a significant execution overhead. In resent years FMI has become a widely
accepted standard with multiple applications in automotive, energy systems, HVAC and more. The standard
was initially developed for the automotive industry, an industry that MAN Diesel & Turbo share many
similarities with including many of the same tools. 95 tools are currently supported the FMI standard, many
of which departments in our company currently use and could be interfaced to in the future. Conclusively
the FMI standard provided the flexibility we needed to co-simulate our custom environments and opens
up for interconnection with a vast amount of tools already in our organization. The implementation of the
standard required work, but once done, the interface has proven stable and shown more possibilities then
first anticipated.

9 CONCLUSION

This paper presented a way of connecting a human machine interface with a software model of an embedded
control system and thermodynamic models in a hybrid co-simulation. The real time operating system of the
embedded target software was compiled to an x86 architecture to enable execution on a developer PC. The
idle thread of the board support package was adapted to create a hook for the embedded system clock,
making it possible to orchestrate a temporal execution across multiple controllers. An event scheduler was
introduced in the idle thread simulating higher resolution events like network interrupts. The connection
to the human machine interface is achieved by creating a virtual switch that connects the network ports of
the software controllers with a software Ethernet interface. This interface is connected to a Linux Ethernet
bridge communicating with the HMI. Engine dynamics are simulated in a separate tool with its own solver,
which is made possible by the FMI co-simulation standard. A scenario requiring user action was formulated
in the advanced thermodynamic model and propagated through the control system software to an operator,
who interacted with the human machine interface.

Human error and misuse are difficult to guard against but an understanding of the cognitive assessment of an
operator can be very beneficial. A hybrid co-simulation environment as the one presented can provide data
otherwise hard to obtain, when building systems that take human interaction into account. Another way of
guarding a system against human error is proper training. At the MAN PrimeServ Academy Copenhagen,
marine engineers are educated in using the system. However, testing resources are very limited due to the
immense system cost. With the hybrid co-simulation environment the cost would be reduced to the cost of
the PC used by the students. The environment even provides much more sophisticated thermodynamic mod-
els than the HIL models currently used in the academy. Furthermore, partners around the world educating
marine engineers could benefit from the environment as an education tool, which in return would benefit
MAN Diesel & Turbo with better operated engines.

REFERENCES

Alegret, G., X. Llamas, M. Vejlgaard-Laursen, and L. Eriksson. 2015. “Modeling of a large marine two-stroke diesel engine with
cylinder bypass valve and EGR system”. IFAC Proceedings Volumes (IFAC-PapersOnline) vol. 48 (16), pp. 273-278.

Awais, M. U., P. Palensky, W. Mueller, E. Widl, and A. Elsheikh. 2013, 11. “Distributed hybrid simulation using the HLA and
the Functional Mock-up Interface”. In IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society, pp.
7564-7569, IEEE.

Blockwitz, T., M. Otter, J. Akesson, M. Arnold, C. Clauss, H. Elmqvist, M. Friedrich, A. Junghanns, J. Mauss, D. Neumerkel,
H. Olsson, and A. Viel. 2012, 11. “Functional Mockup Interface 2.0: The Standard for Tool independent Exchange of Simu-
lation Models”. In 8th International Modelica Conference 2011, pp. 173—184.

Pedersen, Madsen, and Bojsen

Eker, J., J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer, S. Sachs, and Y. Xiong. 2003. “Taming heterogeneity
- The ptolemy approach”. Proceedings of the IEEE vol. 91 (1), pp. 127-143.

Gopalakrishna, A. K., T. Ozcelebi, J. J. Lukkien, and A. Liotta. 2017, 2. “Relevance in cyber-physical systems with humans in the
loop”. Concurrency and Computation: Practice and Experience vol. 29 (3), pp. €3827.

Hansen, J. M., C.-G. Zander, N. Pedersen, M. Blanke, and M. Vejlgaard-Laursen. 2013. “Modelling for Control of Exhaust Gas
Recirculation on Large Diesel Engines”. IFAC Proceedings Volumes vol. 46 (33), pp. 380-385.

Larsen, P. G., J. Fitzgerald, J. Woodcock, P. Fritzson, J. Brauer, C. Kleijn, T. Lecomte, M. Pfeil, O. Green, S. Basagiannis, and
A. Sadovykh. 2016, 4. “Integrated tool chain for model-based design of Cyber-Physical Systems: The INTO-CPS project”. In
2016 2nd International Workshop on Modelling, Analysis, and Control of Complex CPS (CPS Data), pp. 1-6, IEEE.

Lieber, R., and D. Fass. 2011. “Human Systems Integration Design: Which Generalized Rationale?”. In Human Centered Design:
Second International Conference, HCD 2011, Held as Part of HCI International 2011, Orlando, FL, USA, July 9-14, 2011.
Proceedings, edited by M. Kurosu, pp. 101-109. Berlin, Heidelberg, Springer Berlin Heidelberg.

Nunes, D. S., P. Zhang, and J. S4 Silva. 2015. “A Survey on Human-in-the-Loop Applications Towards an Internet of All”. IEEE
COMMUNICATION SURVEYS & TUTORIALS vol. 17 (2).

Pedersen, N., T. Bojsen, J. Madsen, and M. Vejlgaard-Laursen. 2016. “FMI for Co-Simulation of Embedded Control Software”.
In The First Japanese Modelica Conferences, May 23-24, Tokyo, Japan, Number 124, pp. 70-77. MAN Diesel & Turbo,
Copenhagen, Denmark, Linkoping University Electronic Press, Linkopings universitet.

Pedersen, N., J. Madsen, and M. Vejlgaard-Laursen. 2015. “Co-Simulation of Distributed Engine Control System and Network
Model using FMI and SCNSL”. 10th IFAC Conference on Manoeuvring and Control of Marine Craft MCMC 2015 vol. 48
(16), pp. 261-266.

QTronic. “FMU SDK”.

Sixto, V., P. Lopez, F. Sanchez, S. Jones, E. Kural, A. F. Parrilla, and F. Le Rhun. 2015. “Advanced co-simulation HMI environment
for fully Electric Vehicles”. In 2014 IEEE International Electric Vehicle Conference, IEVC 2014.

Wahlstrom, J., and L. Eriksson. 2011. “Modelling diesel engines with a variable-geometry turbocharger and exhaust gas recir-
culation by optimization of model parameters for capturing non-linear system dynamics”. Proceedings of the Institution of
Mechanical Engineers, Part D: Journal of Automobile Engineering vol. 225 (7), pp. 960-986.

Widl, E., W. Muller, A. Elsheikh, M. Hortenhuber, and P. Palensky. 2013. “The FMI++ library: A high-level utility package for
FMI for model exchange”. 2013 Workshop on Modeling and Simulation of Cyber-Physical Energy Systems, MSCPES 2013.

Zeller, M., G. Weiss, D. Eilers, and R. Knorr. 2010. “Co-simulation of self-adaptive automotive embedded systems”. Proceedings
- IEEE/IFIP International Conference on Embedded and Ubiquitous Computing, EUC 2010, pp. 73-80.

Zhang, Z., E. Eyisi, X. Koutsoukos, J. Porter, G. Karsai, and J. Sztipanovits. 2013. “Co-simulation framework for design of time-
triggered cyber physical systems”. 2013 ACM/IEEE International Conference on Cyber-Physical Systems, ICCPS 2013, pp.
119-128.

AUTHOR BIOGRAPHIES

NICOLAI PEDERSEN is an industrial Ph.D. student at the Department of Applied Mathematics and Com-
puter Science at the Technical University of Denmark. His Ph.D. is in collaboration with MAN Diesel &
Turbo in the department of Basic Software Platform. He holds a M.Sc. in Electrical Engineering and his
research interests lie in embedded systems and optimization of development process through co-simulation.

TOM BOJSEN is a software engineer at MAN Diesel & Turbo. He holds a Bachelor in Electronic Engi-
neering form the Technical University of Denmark. Tom has more than 20 years of experience in embedded
software with special interest in network engineering.

JAN MADSEN is Full Professor in Computer-Based Systems at Department of Applied Mathematics and
Computer Science (DTU Compute), Technical University of Denmark (DTU). His research interests in-
clude methods and tools for systems engineering of computing systems. Present research covers embedded
systems, wireless sensor networks (Internet-of-Things), microfluidic biochips (Lab-on-Chip) and synthetic
biology.

