


a sensitivity analysis of the parameters of the evolutionary

algorithm is performed to determine the parameters that

produce good solutions. This study is practically helpful

when real-world problems are to be solved and when there

is no hint of the optimal solutions.24 Sensitivity analysis is

achieved by executing the evolutionary algorithm under

different configurations Gi (e.g., different crossover and

mutation probabilities) with 30 independent runs for each

configuration. In our case, we chose the third instance (12

used vehicles and 34 matched requests) to perform our

test; the simulation results are depicted in Table 3. The

third column indicates the value of the objective function

Figure 14. Requests do not need transfer.

Figure 15. Requests need transfer.
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obtained by the best carpooling solution. We note that the

best solution for each scenario corresponds to the one that

has the lowest objective function. Columns 4 to 8 refer to

the values of each criterion (expressed in seconds). The

last column corresponds to the processing time required

by the MACGeO algorithm to achieve the maximum num-

ber of generations.

The sensitivity analysis of the simulation results, pre-

sented in Table 3, reveals that objective function values do

not follow any unified pattern for the last configurations

(Pc = 0:8 and Pc = 0:7). By contrast, for Pc = 0:9 and

Pm = 0:3–0:05, the objective function values follow the

same trend. From these observations, it appears that the

best configuration, with an objective function value of

2058.2, is for Pc = 0:9 and Pm = 0:05. Additionally,

under this configuration, we note that the computing time

is reduced to a minimum. Hence, Pc = 0:9 and Pm = 0:05
are considered as the parameters for our MACGeO

algorithm.

An overall summary of the experimental results is

given in Table 4. This indicates the scores (objective

function and different criteria) of the best solutions gener-

ated by our MACGeO algorithm for the six instances used

in this study. By comparing the results obtained by the

second and the third instances, we notice that the objective

function value increases significantly. This results from

the transfer process. In fact, in the second instance, only

12% of served requests require a transfer process to reach

their final destinations. However, among the 34 matched

requests in the third instance, 26.47% need transfers to

make their trips. It is obvious that, in the multihop context,

the optimal scenario is when the first driver drops the rider

at the GTZ. Immediately after that, the second vehicle

arrives to pick up the rider. However, this scenario is rare.

Therefore, in most cases, the use of multihop adds addi-

tional waiting time for both riders and drivers in the pick-

up nodes.

Figure 16 illustrates our simulation zone (Lille metro-

politan region) using a Google Maps application and visua-

lizes an example of ridematching solution considering our

best solution generated by the MACGeO algorithm.22 This

example presents the itinerary of vehicle V 18, starting from

Table 3. Effect of crossover and mutation probabilities on objective function value.

Configuration Objective function Criteria (s) Time (s)

Pc Pm TRWT TVWT TRDT TVDT TRT

0.9 0.3 2816.29 3864 633 5530.98 1906 2097 22.07
0.2 2100.05 2995.08 191 3821.18 1542 1733 21.27
0.1 2093.29 2815 342 3969.51 1609 1800 18.61
0.05 2058.2 2729.18 242 4289.31 1567 1758 16.88

0.8 0.3 2213.75 3048.54 131 3976.35 1838 2029 23.17
0.2 2422.86 3061.16 487 4884.93 1978 2169 19.52
0.1 2166.46 2917.2 267 4251.81 1673 1864 18.2
0.05 2635.6 3293.75 545 5396.01 2168 2359 18.1

0.7 0.3 2338.17 2958.76 236 4913.65 1990 2181 21.22
0.2 2162.13 2956.53 269 4302.2 1588 1779 20.62
0.1 2170.76 2876.48 227 4273.71 1741 1932 18.35
0.05 2119.16 2767.4 248 4284.01 1717 1908 16.67

TRDT: total riders’ delay time; TRT: total route time; TRWT: total riders’ waiting time; TVDT: total vehicles’ delay time; TVWT: total vehicles’

waiting time.

Table 4. Simulation results.

Instances Objective function Criteria (s) Time (s)

TRWT TVWT TRDT TVDT TVRT

inst1 250.03 177.21 48 631.15 307 450 13.95
inst2 842 1461.91 55 1169.75 363 576 14.56
inst3 2058.2 2729.18 242 4289.31 1567 1758 16.88
inst4 4474.67 5636.98 1016 9093.76 3441 4191 26.47
inst5 6568,99 7878,61 1422 13143.36 4854 5547 57.12
inst6 7354.84 9926.45 1197 14203.63 5345 6555 68.47

TRDT: total riders’ delay time; TRT: total route time; TRWT: total riders’ waiting time; TVDT: total vehicles’ delay time; TVWT: total vehicles’

waiting time.
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its origin V 18+ , followed by the pick-up nodes (red) and

delivery nodes (blue) to its final destination V 18�.

6.3 Comparison between MACGeO and other
methods

6.3.1 Comparison of the simulation result of MACGeO and our
Multicriterion Tabu Search Algorithm. To measure the perfor-

mance of our MACGeO algorithm, we will primarily com-

pare its outputs with the results provided by our MTSA

(Multicriterion Tabu Search Algorithm), which has been

published previously.25 The MTSA employs an explicit

memory system and several searching strategies developed

to avoid entrapment by local solutions, and uses vehicles’

detours as an original aspiration process. According to our

mathematical formulation, in the Tabu Search approach,

the vehicles’ routes are known in advance. Then assign-

ments are determined based on the similarity between the

routes required by the passengers and the routes specified

by the drivers. In addition, according to the MTSA, a

request can be assigned to any vehicle during the optimiza-

tion process, and this assignment may differ from one gen-

eration to another. However, in the MACGeO approach,

assignments are managed by a process independent of the

evolutionary algorithm. In this process, users’ routes are

dynamically generated, based essentially on their geo-

graphic coordinates (origins and destinations) and their

positions relative to each other.

Table 5 summarizes the simulation results of the two

approaches, MTSA and MACGeO, for the second instance

(20 vehicles and 36 requests). For this instance, we have

established several scenarios by varying the number of

vehicles available on the network: 8, 12, 16, and 20 vehi-

cles. For each scenario, Table 5 indicates the percentage of

served requests and the rate of the transfer. By analyzing

the results, we notice that the dynamic establishment of

routes offers considerable leeway for our evolutionary pro-

cess, compared with the Tabu Search approach. Indeed, for

the MACGeO algorithm, we have served almost all of the

requests using only 60% of available resources (vehicles).

However, for the MTSA, even if we use all our resources

(20 vehicles), we cannot serve more than 86% of requests.

To summarize, the assignment process that precedes the

launch of the evolutionary algorithm performs a dual role.

1. Since it takes into account only the geographical

coordinates of the users and their positions in rela-

tion to one another, this process generates opti-

mized assignments with more flexibility. Indeed,

Figure 16. Solution’s visualization for vehicle V18.

Table 5. MTSA versus MACGeO with respect to matched users.

Approach Used vehicles Matched requests (%) Transfer (%)

MTSA 8 28 13.10
12 63.88 34.78
16 72.22 18.44
20 86.11 21.23

MACGeO 8 77.77 28.57
12 94.44 26.47
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unlike the MTSA approach, it is not limited to the

similarities between the users’ itineraries to estab-

lish initial assignments. This offers greater flexibil-

ity for our system to match more requests.

2. These initial assignments present the starting point

for our evolutionary process, which must establish

dynamic routes for the participating vehicles while

respecting the imposed assignments. Subsequently,

the assignment process can limit the search space

and guide the evolutionary approach toward pro-

mising areas.

6.3.2 Comparison between MACGeO and other state-of-the-art
methods. To measure the effectiveness of our method

against other approaches developed to solve the ride-

matching problem, we draw comparisons between

MACGeO, FCGA, and HDCCP (Heuristic Daily Car

Pooling Problem27) with respect to the number of served

riders and vehicles involved in the carpooling service. We

note that FCGA corresponds to the Fuzzy Controlled

Genetic-based Carpool Problem. It is an extended version

of the genetic algorithm that applies fuzzy logic for the

crossover and mutation probability adjustment.26 The pro-

posed system employs several current information and

communication technologies and integrates an optimiza-

tion module that solves the specific routing problem heur-

istically. Although the three approaches, MACGeO,

FCGA, and HDCCP, have operated in different simulation

environments, they have been tested in real-life case stud-

ies and simulated in fairly similar carpooling networks that

consider limited geographical areas. It is important to note

that the transfer process is not authorized in both FCGA

and HDCCP.

Figure 17 illustrates the number of served riders accord-

ing to the number of involved vehicles. It is easily obser-

vable that MACGeO is able to manage the ridematching

process, while minimizing the required resources (vehi-

cles). This is due to the authorization of transfers between

the participant vehicles and the dynamic establishment of

drivers’ itineraries, leading to more flexibility.

For a more accurate comparison between MACGeO and

HDCCP, Figure 18 shows the total driving time of the best

solution, computed in seconds, according to the number of

served rides. It is interesting to note that, in our case, the

total driving time corresponds to the total route time criter-

ion. It is clearly observed from the figure that, for the first

instances, the MACGeO algorithm is able to generate ride-

matching solutions with a minimum total driving time.

Nevertheless, once the number of served riders exceeds

130, we observe a significant increase in the total driving

time compared with HDCCP. This is principally due to the

management of the transfer process. Added to that, Calvo

et al.27 focuses on the to-work problem (e.g., from differ-

ent origins to one destination). Thereafter, in the simula-

tion section, HDCCP is applied to generate carpool

solutions to transport a set of employees from their homes

to their workplace. By contrast, MACGeO generates ride-

matching solutions from different origins to different desti-

nations. In this case, drivers may make detours to drop off

their assigned riders, which explains the significant

increase in the total driving time of MACGeO compared

with HDCCP.

7 Conclusions

In this paper, we have dealt with the dynamic ridesharing

problem with the transfer process authorization and we

provided a multicriterion evolutionary optimization algo-

rithm to solve it. The originality of our approach resides in

the fact that chromosome coding is dynamic and in the

nonexistence of a correction process for the crossover and

mutation operators.

There are many interesting ideas to extend this work.

First, we might move to a more realistic scenario under a

large number of users and add more constraints, such as spe-

cifying a maximum travel distance for each driver’s offer.

Figure 18. Comparison of total driving time.

Figure 17. Comparison in regard to number of used vehicles
and served riders.
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Moreover, owing to the problem’s high complexity, the ride-

matching problem can be decomposed into less complex

tasks. Indeed, we will propose in a future work an alliance

between optimization and Multi-Agent System (SMA) to

highlight the decentralized parallel process. In addition, we

will study the mathematical proof of our method’s conver-

gence in a large-scale ridesharing problem.
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