Introducing Digital Controls on Legacy Simulators

18 January 2017
Vincent Gagnon
Director, Marketing & Sales

2017 Power Plant Simulation Conference
(PowerPlantSim’17)
Topics

• Background Information
• Digital Controls - Simulator Implementation Strategies & Selection Factors
• L3 MAPPS’ Technology for Digital Controls
 – Controls Simulation → Orchid® Modeling Environment
 – HMI Simulation → Orchid® Control System
 – Soft Panels → Orchid® Graphic Editor
 – Classroom → Orchid® Touch Interface
• Case Studies
 – St. Lucie CVCS Digital Controllers (Yokogawa YS1700 Controllers)
 – Cernavodă Main Generator Excitation System (GE EX2100e)
 – Callaway Main Feedwater Control System (Siemens T3000 DCS)
• Conclusions
Majority of US NPPs built in 1970s and 1980s with analog controls
Plant Digitalization - Ultimate Goal

- Digital Human-Machine Interface (HMI) replacing, to a large extent, conventional analog HMI
- Analog control and command (relays, switches, comparators, etc.) being replaced with digital I&C systems (DCS)
- Sensors, detectors, transmitters, actuators increasingly incorporating digital technologies
Reality is that digital systems are slowly being introduced
Simulator Myths/Realities

• Digitalization complexity creates uncertainty
• Simulation has a large role to play to overcome this uncertainty/complexity

Myths

– Simulators are for operator training, not for design, not for engineering
– Many simplifications are made to simulate plant behavior for simulator to run in real time
– This “conventional wisdom” comes from 1970s post-TMI simulators

Realities

– Simulators are for operator training and for supporting plant/system design and verification & validation (goal: identify and resolve design issues early)
– Computing power and simulation technology have come a long way: one-to-one replication of design/plant
– Numerous successes experienced with NNB and legacy NPP programs where simulation serves as design assist tool
Simulators are a part of the answer

- Today’s simulation is based on real-time, high-fidelity and graphical models
- One-to-one simulation of plant design can be done now
- ALL models are generated in a single, integrated environment (Orchid®)
- Make sure components, systems, integrated systems, the full plant behave the way they are designed
- Validate I&C/DCS upfront
Digital Controls - Simulator Implementation Strategies & Selection Factors
Simulator Implementation Strategies

- There is more than one answer

 Stimulation

 Emulation

 Simulation

- A hybrid strategy is also possible where the controls and HMI use different solutions (e.g. simulated controls and stimulated HMI)
Simulator Strategy Selection Factors

• Project Strategy
• Data Availability (plant vs. simulator timing)
• Digital Controls Vendor (OEM IP considerations)
• Cost of Hardware, Development and Software Licenses
• Licensing Restrictions
• Project Schedule
• Development/Classroom Simulators (portability of simulation)
• Configuration Control/Management (ease to implement future plant changes)
• Fidelity Requirements
• Preference
• etc.
L3 MAPPS’ Technology for Digital Controls Simulator Implementation
Controls Simulation

• Graphical Models
 – Creation of object libraries with control algorithm blocks
 – Creation of schematics
 ▪ Automatic process → XML import of control sheets from plant system export
 ▪ Manual process → manual creation of control sheet schematics
 – Accessible from within Orchid® Instructor Station

• Non-Graphical Models
 – C/C++ source code
 ▪ Automatic process → translator generating database and control code
 ▪ Manual process → manual database and coding
HMI Simulation

- Based on Real-Time Data Acquisition and Control System (capability to execute code)
- Client/Server Architecture (can run concurrently on same computer)
- Powerful Graphic Editor
 - Automatic Process → translator generating graphic pages
 - Manual Process → manual creation of graphic pages
- Database Maintenance Tools
- Supports
 - Trends
 - Alarm Lists
 - Popups (e.g. confirmation, point display, etc.)
 - etc.
- Inherent Support for Simulator Commands (e.g. Freeze/Run, Store/Restore, Backtrack/Replay, etc.)
- Highly Customizable
HMI Simulation

Orchid® Control System Sample Trend Display

Orchid® Control System Sample Translated HMI
Soft Panels

• Real-time Advanced Visualization Environment
• Photo-realistic Interactive Control Room Panels (virtual panels)
 – Instructor Mode → access to panel instrument overrides (failures)
 – Operator Model → plant operations
• Plant Interactive Schematics (active schematics)
 – P&IDs
 – Electrical One-line Diagrams
 – Control Diagrams
 – etc.
• Supports Zoom, Pan, Tilt
• One-world (continuous panels)
• Supports Importing Vector Graphics and Bitmaps
• Accessible from within Orchid® Instructor Station and Orchid® Touch Interface (classroom)
Integration of Control Simulation/HMI Simulation/Soft Panels
Integration of Control Simulation/HMI Simulation/Soft Panels
Examples of Third-Party DCS/I&C on L3 MAPPS Simulators

- Common Q
- AC160
- Ovation
- TELEPERM XS
- QDS
- OM690
- SPPA-T2000
- SPPA-T3000
- TELEPERM ME
- HOLLiAS
- MELTAC
- DCC
- Advant Controller 160
- Advant Controller 450
- MicroSCADA
- ALSPA P320
- ALSPA CONTROSTEAM

The company logos on this page are the company logos of their respective companies. The trademarks on this page are the trademarks of their respective companies or their providers. Company logos and trademarks on this page are provided for illustrative purposes only.

© 2017 L3 MAPPS. All rights reserved.
Case Study:
St. Lucie CVCS Digital Controllers
Project Overview

- **Plant:** St. Lucie (Florida, USA)
- **End Customer:** Florida Power & Light
- **Contractor:** L3 MAPPS
- **Plant Modification:** Replacement of three (3) legacy analog Chemical Volume Control System (CVCS) Fischer & Porter controllers with three (3) new digital YS1700 Yokogawa controllers
- **Strategy**
 - Controls → Non-graphical simulation in C code with use of subroutines
 - FSS HMI (Controller) → Same hardware as the plant (Yokogawa YS1700/A34); A34 option provides the TCP/IP Ethernet connectivity; stimulated but using only display functions (control functions disabled)
 - FSS HMI Interface → TCP/IP (Modbus)
 - Classroom HMI → Fully functional soft panels developed with Orchid® Graphic Editor running either inside the Orchid® Instructor Station or on the Orchid® Touch Interface bays
Legacy Analog vs. New Digital Controllers

Fischer & Porter Controllers

Yokogawa YS1700 Controllers
Yokogawa YS1700 Soft Panels
Case Study: Cernavodă Main Generator Excitation System
Project Overview

- **Plant:** Cernavodă (Romania)
- **End Customer:** Societatea Nationala Nuclearelectrica
- **Prime Contractor:** GE Energy Control Solutions
 - Subcontractor: L3 MAPPS
- **Plant Modification:** Replace the existing GE Generrex with a GE EX2100e Main Generator Excitation System also referred to as the Main Generator Automatic Voltage Regulator (AVR)
- **Strategy**
 - Controls → Graphical simulation with predecessor of Orchid® Modeling Environment (ROSE®)
 - HMI → Simulation with Orchid® Control System
Controls Simulation
Exciter Control Operator HMI

Plant

Simulator
Capability Curve Operator HMI

Plant

Simulator
Case Study:
Callaway Main Feedwater Control System
Project Overview

- **Plant:** Callaway (Missouri, USA)
- **End Customer:** Ameren Missouri
- **Contractors:** Siemens & L3 MAPPS
- **Plant Modification:** Implement the Siemens SPPA-T3000 main feedwater control system into the simulator
- **Requirements:** Capability to switch between the following 3 configurations (single software configuration): simulated legacy controls, simulated new controls and stimulated plant system (engineering simulator)
- **Strategy**
 - Operator Training Simulator
 - Controls → Automatic graphical simulation with Orchid® Modeling Environment
 - HMI → Simulation with Orchid® Control System
 - Engineering Simulator
 - Controls → Same hardware as the plant (Siemens SPPA-T3000)
 - HMI → Same as the plant
 - Engineering Simulator Controls/HMI Interface → Compact I/O System (WAGO)
Operator Training Simulator - Simulated Controls/HMI

Plant Controls
Siemens T3000 Workbench

Simulated Controls
Orchid® Modeling Environment

© 2017 L3 MAPPS. All rights reserved.
Switching Between Configurations

Legacy Controls Simulation

New Controls Simulation

Siemens SPPA-T3000 Stimulation

3-way Selector Switch

Process Simulation
Engineering Simulator

Process Simulation

I/O Interface

Siemens Stimulated Equipment

SPPA T3000
Conclusions
Conclusions

• Digitalization of legacy plants is progressing and will continue in the future
 – Accepted principle in “Delivering the Nuclear Promise”

• Simulators can be used for operator training and for plant/system design and verification & validation helping identify and resolve design issues before introduction in the plant

• Several factors need to be considered before selecting a digital controls implementation strategy

• L3 MAPPS has extensive experience (40+ years) in implementing digital controls in legacy simulators using the different implementation strategies (i.e. stimulation, emulation, simulation and hybrid)

• L3 MAPPS Orchid® simulation suite offers all the features required for digital controls implementation in operator training simulators (FSS and classroom) as well as engineering simulators in a fully integrated environment
Thank you